Moduli spaces of surfaces and real structures

被引:37
|
作者
Catanese, F [1 ]
机构
[1] Univ Gottingen, Math Inst, D-3400 Gottingen, Germany
关键词
D O I
10.4007/annals.2003.158.577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give infinite series of groups Gamma and of compact complex surfaces of general type S with fundamental group Gamma such that 1) Any surface S' with the same Euler number as S, and fundamental group Gamma, is diffeomorphic to S. 2) The moduli space of S consists of exactly two connected components, exchanged by complex conjugation. Whence, i) On the one hand we give simple counterexamples to the DEF = DIFF question whether deformation type and diffeomorphism type coincide for algebraic surfaces. ii) On the other hand we get examples of moduli spaces without real points. iii) Another interesting corollary is the existence of complex surfaces S whose fundamental group Gamma cannot be the fundamental group of a real surface. Our surfaces are surfaces isogenous to a product; i.e., they are quotients (C-1 x C-2)/G of a product of curves by the free action of a finite group G. They resemble the classical hyperelliptic surfaces, in that G operates freely on C-1, while the second curve is a triangle curve, meaning that C-2/G equivalent to P-1 and the covering is branched in exactly three points.
引用
收藏
页码:577 / 592
页数:16
相关论文
共 50 条