On the Number of Forests and Connected Spanning Subgraphs

被引:0
|
作者
Márton Borbényi
Péter Csikvári
Haoran Luo
机构
[1] ELTE: Eötvös Loránd University,Department of Computer Science, Mathematics Institute
[2] Alfréd Rényi Institute of Mathematics,Department of Mathematics
[3] ELTE: Eötvös Loránd University,undefined
[4] University of Illinois at Urbana-Champaign,undefined
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Forests; Connected spanning subgraphs; Acyclic orientations; Primary: 05C30; Secondary: 05C31; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
Let F(G) be the number of forests of a graph G. Similarly let C(G) be the number of connected spanning subgraphs of a connected graph G. We bound F(G) and C(G) for regular graphs and for graphs with a fixed average degree. Among many other things we study fd=supG∈GdF(G)1/v(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_d=\sup _{G\in {\mathcal {G}}_d}F(G)^{1/v(G)}$$\end{document}, where Gd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_d$$\end{document} is the family of d-regular graphs, and v(G) denotes the number of vertices of a graph G. We show that f3=23/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_3=2^{3/2}$$\end{document}, and if (Gn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G_n)_n$$\end{document} is a sequence of 3-regular graphs with the length of the shortest cycle tending to infinity, then limn→∞F(Gn)1/v(Gn)=23/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }F(G_n)^{1/v(G_n)}=2^{3/2}$$\end{document}. We also improve on the previous best bounds on fd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_d$$\end{document} for 4≤d≤9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\le d\le 9$$\end{document}.
引用
收藏
页码:2655 / 2678
页数:23
相关论文
共 50 条
  • [31] Spanning Even Subgraphs of 3-Edge-Connected Graphs
    Jackson, Bill
    Yoshimoto, Kiyoshi
    JOURNAL OF GRAPH THEORY, 2009, 62 (01) : 37 - 47
  • [32] On 2-connected spanning subgraphs with low maximum degree
    Sanders, DP
    Zhao, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (01) : 64 - 86
  • [33] Packing spanning trees and spanning 2-connected k-edge-connected essentially -edge-connected subgraphs
    Gu, Xiaofeng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (03) : 924 - 933
  • [34] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Xiangwen Li
    Chunxiang Wang
    Qiong Fan
    Zhaohong Niu
    Liming Xiong
    Graphs and Combinatorics, 2013, 29 : 275 - 280
  • [35] Generating minimal spanning k-vertex connected subgraphs
    Boros, Endre
    Borys, Konrad
    Elbassioni, Khaled
    Gurvich, Vladimir
    Makino, Kazuhisa
    Rudolf, Gabor
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2007, 4598 : 222 - +
  • [36] Sparse Highly Connected Spanning Subgraphs in Dense Directed Graphs
    Kang, Dong Yeap
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (03): : 423 - 464
  • [37] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Li, Xiangwen
    Wang, Chunxiang
    Fan, Qiong
    Niu, Zhaohong
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2013, 29 (02) : 275 - 280
  • [38] HIGHLY CONNECTED SUBGRAPHS WITH LARGE CHROMATIC NUMBER
    Nguyen, Tung h.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (01) : 243 - 260
  • [39] THE TURN NUMBER OF SPANNING STAR FORESTS
    Zhang, Lin-peng
    Wang, Ligong
    Zhou, Jiale
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (02) : 303 - 312
  • [40] The Turan number for spanning linear forests
    Wang, Jian
    Yang, Weihua
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 291 - 294