On the Number of Forests and Connected Spanning Subgraphs

被引:0
|
作者
Márton Borbényi
Péter Csikvári
Haoran Luo
机构
[1] ELTE: Eötvös Loránd University,Department of Computer Science, Mathematics Institute
[2] Alfréd Rényi Institute of Mathematics,Department of Mathematics
[3] ELTE: Eötvös Loránd University,undefined
[4] University of Illinois at Urbana-Champaign,undefined
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Forests; Connected spanning subgraphs; Acyclic orientations; Primary: 05C30; Secondary: 05C31; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
Let F(G) be the number of forests of a graph G. Similarly let C(G) be the number of connected spanning subgraphs of a connected graph G. We bound F(G) and C(G) for regular graphs and for graphs with a fixed average degree. Among many other things we study fd=supG∈GdF(G)1/v(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_d=\sup _{G\in {\mathcal {G}}_d}F(G)^{1/v(G)}$$\end{document}, where Gd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_d$$\end{document} is the family of d-regular graphs, and v(G) denotes the number of vertices of a graph G. We show that f3=23/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_3=2^{3/2}$$\end{document}, and if (Gn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G_n)_n$$\end{document} is a sequence of 3-regular graphs with the length of the shortest cycle tending to infinity, then limn→∞F(Gn)1/v(Gn)=23/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }F(G_n)^{1/v(G_n)}=2^{3/2}$$\end{document}. We also improve on the previous best bounds on fd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_d$$\end{document} for 4≤d≤9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\le d\le 9$$\end{document}.
引用
收藏
页码:2655 / 2678
页数:23
相关论文
共 50 条