Private simultaneous messages based on quadratic residues

被引:0
|
作者
Kazumasa Shinagawa
Reo Eriguchi
Shohei Satake
Koji Nuida
机构
[1] Ibaraki University,Institute of Mathematics for Industry (IMI)
[2] National Institute of Advanced Industrial Science and Technology (AIST),undefined
[3] Kumamoto University,undefined
[4] Kyushu University,undefined
来源
关键词
Secure multiparty computation; Private simultaneous messages; Quadratic residues; Symmetric functions; Paley graphs; 94A60; 11T71; 14G50; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
Private Simultaneous Messages (PSM) model is a minimal model for secure multiparty computation. Feige, Kilian, and Naor (STOC 1994) and Ishai (Cryptology and Information Security Series 2013) constructed PSM protocols based on quadratic residues. In this paper, we define QR-PSM protocols as a generalization of these protocols. A QR-PSM protocol is a PSM protocol whose decoding function outputs the quadratic residuosity modulo p of what is computed from messages. We design a QR-PSM protocol for any symmetric function f:{0,1}n→{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: \{0,1\}^n \rightarrow \{0,1\}$$\end{document} of communication complexity O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document}. As far as we know, it is the most efficient PSM protocol for symmetric functions since the previously known best PSM protocol was of O(n2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2\log n)$$\end{document} (Beimel et al., CRYPTO 2014). We also study the sizes of the underlying finite fields Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p$$\end{document} in the protocols since the communication complexity of a QR-PSM protocol is proportional to the bit length of the prime p. We show that there is a prime p≤(1+o(1))N222N-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \le (1+o(1))N^22^{2N-2}$$\end{document} such that any length-N pattern of quadratic (non)residues appears modulo p (and hence it can be used for general QR-PSM protocols), which improves the Peralta’s known result (Mathematics of Computation 1992) by a constant factor (1+2)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\sqrt{2})^2$$\end{document}.
引用
收藏
页码:3915 / 3932
页数:17
相关论文
共 50 条
  • [41] A conference key distribution scheme based on the theory of quadratic residues
    Tan, KJ
    Zhu, HW
    [J]. COMPUTER COMMUNICATIONS, 1999, 22 (08) : 735 - 738
  • [42] Remote scheme for password authentication based on theory of quadratic residues
    Chang, CC
    Tsu, SM
    Chen, CY
    [J]. COMPUTER COMMUNICATIONS, 1995, 18 (12) : 936 - 942
  • [43] MONITORING SIMULTANEOUS AUDITORY MESSAGES
    SHAFFER, LH
    HARDWICK, J
    [J]. PERCEPTION & PSYCHOPHYSICS, 1969, 6 (6B): : 401 - &
  • [44] Communication complexity of simultaneous messages
    Babai, L
    Gál, A
    Kimmel, PG
    Lokam, SV
    [J]. SIAM JOURNAL ON COMPUTING, 2003, 33 (01) : 137 - 166
  • [45] Relaying Simultaneous Multicast Messages
    Gunduz, D.
    Simeone, O.
    Goldsmith, A.
    Poor, H. V.
    Shamai , S.
    [J]. ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 47 - +
  • [46] Regular Patterns of Quadratic Residues
    Aebi, Christian
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (04): : 383 - 384
  • [47] A sum related to quadratic residues
    Barbara, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (02): : 208 - 208
  • [48] QUADRATIC POLYNOMIALS WITH SAME RESIDUES
    WILLIAMS, KS
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (09): : 969 - &
  • [49] On the Stochasticity Parameter of Quadratic Residues
    Gabdullin, M. R.
    [J]. DOKLADY MATHEMATICS, 2020, 101 (02) : 93 - 95
  • [50] Emoji Recommendation in Private Instant Messages
    Guibon, Gael
    Ochs, Magalie
    Bellot, Patrice
    [J]. 33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 1821 - 1823