Private simultaneous messages based on quadratic residues

被引:0
|
作者
Kazumasa Shinagawa
Reo Eriguchi
Shohei Satake
Koji Nuida
机构
[1] Ibaraki University,Institute of Mathematics for Industry (IMI)
[2] National Institute of Advanced Industrial Science and Technology (AIST),undefined
[3] Kumamoto University,undefined
[4] Kyushu University,undefined
来源
关键词
Secure multiparty computation; Private simultaneous messages; Quadratic residues; Symmetric functions; Paley graphs; 94A60; 11T71; 14G50; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
Private Simultaneous Messages (PSM) model is a minimal model for secure multiparty computation. Feige, Kilian, and Naor (STOC 1994) and Ishai (Cryptology and Information Security Series 2013) constructed PSM protocols based on quadratic residues. In this paper, we define QR-PSM protocols as a generalization of these protocols. A QR-PSM protocol is a PSM protocol whose decoding function outputs the quadratic residuosity modulo p of what is computed from messages. We design a QR-PSM protocol for any symmetric function f:{0,1}n→{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: \{0,1\}^n \rightarrow \{0,1\}$$\end{document} of communication complexity O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document}. As far as we know, it is the most efficient PSM protocol for symmetric functions since the previously known best PSM protocol was of O(n2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2\log n)$$\end{document} (Beimel et al., CRYPTO 2014). We also study the sizes of the underlying finite fields Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p$$\end{document} in the protocols since the communication complexity of a QR-PSM protocol is proportional to the bit length of the prime p. We show that there is a prime p≤(1+o(1))N222N-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \le (1+o(1))N^22^{2N-2}$$\end{document} such that any length-N pattern of quadratic (non)residues appears modulo p (and hence it can be used for general QR-PSM protocols), which improves the Peralta’s known result (Mathematics of Computation 1992) by a constant factor (1+2)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\sqrt{2})^2$$\end{document}.
引用
收藏
页码:3915 / 3932
页数:17
相关论文
共 50 条
  • [1] Private simultaneous messages based on quadratic residues
    Shinagawa, Kazumasa
    Eriguchi, Reo
    Satake, Shohei
    Nuida, Koji
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (12) : 3915 - 3932
  • [2] Private simultaneous messages protocols with applications
    Ishai, Y
    Kushilevitz, E
    [J]. PROCEEDINGS OF THE FIFTH ISRAELI SYMPOSIUM ON THEORY OF COMPUTING AND SYSTEMS, 1997, : 174 - 183
  • [3] The Communication Complexity of Private Simultaneous Messages, Revisited
    Benny Applebaum
    Thomas Holenstein
    Manoj Mishra
    Ofer Shayevitz
    [J]. Journal of Cryptology, 2020, 33 : 917 - 953
  • [4] Recent Progress in Private Simultaneous Messages Protocols
    Kawachi, Akinori
    [J]. 2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [5] The Communication Complexity of Private Simultaneous Messages, Revisited
    Applebaum, Benny
    Holenstein, Thomas
    Mishra, Manoj
    Shayevitz, Ofer
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT II, 2018, 10821 : 261 - 286
  • [6] The Communication Complexity of Private Simultaneous Messages, Revisited
    Applebaum, Benny
    Holenstein, Thomas
    Mishra, Manoj
    Shayevitz, Ofer
    [J]. JOURNAL OF CRYPTOLOGY, 2020, 33 (03) : 917 - 953
  • [7] PRIVATE MESSAGES
    Balin, D. A.
    [J]. NOVYI MIR, 2023, (04): : 106 - 108
  • [8] QUADRATIC RESIDUES
    ANKENY, NC
    [J]. DUKE MATHEMATICAL JOURNAL, 1954, 21 (01) : 107 - 112
  • [9] On quadratic residues
    McDonnell, J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1913, 14 (1-4) : 477 - 480
  • [10] From Private Simultaneous Messages to Zero-Information Arthur–Merlin Protocols and Back
    Benny Applebaum
    Pavel Raykov
    [J]. Journal of Cryptology, 2017, 30 : 961 - 988