Document-level relation extraction based on sememe knowledge-enhanced abstract meaning representation and reasoning

被引:0
|
作者
Qihui Zhao
Tianhan Gao
Nan Guo
机构
[1] Northeastern University,Software College
[2] Northeastern University,School of Computer Science and Engineering
来源
关键词
Document-level relation extraction; Graph neural networks; Sememe computation; Abstract meaning representation; Long-tailed task;
D O I
暂无
中图分类号
学科分类号
摘要
Document-level relation extraction is a challenging task in information extraction, as it involves identifying semantic relations between entities that are dispersed throughout a document. Existing graph-based approaches often rely on simplistic methods to construct text graphs, which do not provide enough lexical and semantic information to accurately predict the relations between entity pairs. In this paper, we introduce a document-level relation extraction method called SKAMRR (Sememe Knowledge-enhanced Abstract Meaning Representation and Reasoning). First, we generate document-level abstract meaning representation graphs using rules and acquire entity nodes’ features through sufficient information propagation. Next, we construct inference graphs for entity pairs and utilize graph neural networks to obtain their representations for relation classification. Additionally, we propose the global adaptive loss to address the issue of long-tailed data. We conduct extensive experiments on four datasets DocRE, CDR, GDA, and HacRED. Our model achieves competitive results and its performance outperforms previous state-of-the-art methods on four datasets.
引用
收藏
页码:6553 / 6566
页数:13
相关论文
共 50 条
  • [41] Graph neural networks with selective attention and path reasoning for document-level relation extraction
    Hang, Tingting
    Feng, Jun
    Wang, Yunfeng
    Yan, Le
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5353 - 5372
  • [42] Self-supervised commonsense knowledge learning for document-level relation extraction
    Li, Rongzhen
    Zhong, Jiang
    Xue, Zhongxuan
    Dai, Qizhu
    Li, Xue
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [43] Document-Level Relation Extraction with Local Relation and Global Inference
    Liu, Yiming
    Shan, Hongtao
    Nie, Feng
    Zhang, Gaoyu
    Yuan, George Xianzhi
    INFORMATION, 2023, 14 (07)
  • [44] Relation-Specific Attentions over Entity Mentions for Enhanced Document-Level Relation Extraction
    Yu, Jiaxin
    Yang, Deqing
    Tian, Shuyu
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1523 - 1529
  • [45] Knowledge-Enhanced Relation Extraction in Chinese EMRs
    Song, Yu
    Zhang, Wenxuan
    Ye, Yajuan
    Zhang, Chenghao
    Zhang, Kunli
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 196 - 201
  • [46] Knowledge-Enhanced Relation Extraction for Chinese EMRs
    Zhao, Qing
    Li, Jianqiang
    Xu, Chun
    Yang, Jijiang
    Zhao, Liang
    IT PROFESSIONAL, 2020, 22 (04) : 57 - 62
  • [47] Document-Level Event Argument Extraction With A Chain Reasoning Paradigm
    Liu, Jian
    Liang, Chen
    Xu, Jinan
    Liu, Haoyan
    Zhao, Zhe
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 9570 - 9583
  • [48] Document-level relation extraction with global and path dependencies
    Jia, Wei
    Ma, Ruizhe
    Yan, Li
    Niu, Weinan
    Ma, Zongmin
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [49] Inter span learning for document-level relation extraction
    Liao, Tao
    Sun, Haojie
    Zhang, Shunxiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 9965 - 9977
  • [50] Entity and Evidence Guided Document-Level Relation Extraction
    Huang, Kevin
    Qi, Peng
    Wang, Guangtao
    Ma, Tengyu
    Huang, Jing
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 307 - 315