Document-level relation extraction based on sememe knowledge-enhanced abstract meaning representation and reasoning

被引:0
|
作者
Qihui Zhao
Tianhan Gao
Nan Guo
机构
[1] Northeastern University,Software College
[2] Northeastern University,School of Computer Science and Engineering
来源
关键词
Document-level relation extraction; Graph neural networks; Sememe computation; Abstract meaning representation; Long-tailed task;
D O I
暂无
中图分类号
学科分类号
摘要
Document-level relation extraction is a challenging task in information extraction, as it involves identifying semantic relations between entities that are dispersed throughout a document. Existing graph-based approaches often rely on simplistic methods to construct text graphs, which do not provide enough lexical and semantic information to accurately predict the relations between entity pairs. In this paper, we introduce a document-level relation extraction method called SKAMRR (Sememe Knowledge-enhanced Abstract Meaning Representation and Reasoning). First, we generate document-level abstract meaning representation graphs using rules and acquire entity nodes’ features through sufficient information propagation. Next, we construct inference graphs for entity pairs and utilize graph neural networks to obtain their representations for relation classification. Additionally, we propose the global adaptive loss to address the issue of long-tailed data. We conduct extensive experiments on four datasets DocRE, CDR, GDA, and HacRED. Our model achieves competitive results and its performance outperforms previous state-of-the-art methods on four datasets.
引用
收藏
页码:6553 / 6566
页数:13
相关论文
共 50 条
  • [1] Document-level relation extraction based on sememe knowledge-enhanced abstract meaning representation and reasoning
    Zhao, Qihui
    Gao, Tianhan
    Guo, Nan
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6553 - 6566
  • [2] Document-level Relation Extraction via Separate Relation Representation and Logical Reasoning
    Huang, Heyan
    Yuan, Changsen
    Liu, Qian
    Cao, Yixin
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (01)
  • [3] Document-level relation extraction via commonsense knowledge enhanced graph representation learning
    Dai, Qizhu
    Li, Rongzhen
    Xue, Zhongxuan
    Li, Xue
    Zhong, Jiang
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [4] Document-Level Relation Extraction with Path Reasoning
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (04)
  • [5] Discriminative Reasoning for Document-level Relation Extraction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1653 - 1663
  • [6] Double Graph Based Reasoning for Document-level Relation Extraction
    Zeng, Shuang
    Xu, Runxin
    Chang, Baobao
    Li, Lei
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 1630 - 1640
  • [7] Evidence Reasoning and Curriculum Learning for Document-Level Relation Extraction
    Xu, Tianyu
    Qu, Jianfeng
    Hua, Wen
    Li, Zhixu
    Xu, Jiajie
    Liu, An
    Zhao, Lei
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 594 - 607
  • [8] Relational Reasoning Model Based on Evidence Sentences for Document-level Relation Extraction
    Li, Tiecheng
    Tang, Jianguo
    Li, Lei
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 671 - 676
  • [9] Document-Level Relation Extraction with Deep Gated Graph Reasoning
    Liang, Zeyu
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2024, 32 (07) : 1037 - 1050
  • [10] Reasoning with Latent Structure Refinement for Document-Level Relation Extraction
    Nan, Guoshun
    Guo, Zhijiang
    Sekulic, Ivan
    Lu, Wei
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1546 - 1557