Finite-Rank Products of Toeplitz Operators in Several Complex Variables

被引:0
|
作者
Trieu Le
机构
[1] University of Waterloo,Department of Pure Mathematics
来源
关键词
Toeplitz operator; weighted Bergman space; finite-rank product; 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
For any α > −1, let A2α be the weighted Bergman space on the unit ball corresponding to the weight (1 – |z|2)α. We show that if all except possibly one of the Toeplitz operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{f_{1} },\ldots,T_{f_{r}}$$\end{document} are diagonal with respect to the standard orthonormal basis of A2α and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{f_{1}} \cdots T_{f_{r}}$$\end{document} has finite rank, then one of the functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{1} ,\ldots, f_{r}$$\end{document} must be the zero function.
引用
收藏
页码:547 / 555
页数:8
相关论文
共 50 条