On the derivation representation of the fundamental Lie algebra of mixed elliptic motives

被引:7
|
作者
Baumard S. [1 ]
Schneps L. [1 ]
机构
[1] Institut de Mathématiques de Jussieu, 4, Place Jussieu, Paris Cedex 05
关键词
Elliptic motives; Lie algebras; Moulds; Multiple zeta values;
D O I
10.1007/s40316-015-0040-8
中图分类号
学科分类号
摘要
Richard Hain and Makoto Matsumoto constructed a category of universal mixed elliptic motives, and described the fundamental Lie algebra of this category: it is a semi-direct product of the fundamental Lie algebra Lie π1(MTM) of the category of mixed Tate motives over Z with a filtered and graded Lie algebra u. This Lie algebra, and in particular u, admits a representation as derivations of the free Lie algebra on two generators. In this paper we study the image E of this representation of u, starting from some results by Aaron Pollack, who determined all the relations in a certain filtered quotient of E, and gave several examples of relations in low weights in E that are connected to period polynomials of cusp forms on SL 2(Z). Pollack’s examples lead to a conjecture on the existence of such relations in all depths and all weights, that we state in this article and prove in depth 3 in all weights. The proof follows quite naturally from Ecalle’s theory of moulds, to which we give a brief introduction. We prove two useful general theorems on moulds in the appendices. © 2016, Fondation Carl-Herz and Springer International Publishing Switzerland.
引用
收藏
页码:43 / 62
页数:19
相关论文
共 50 条
  • [31] Quantization of the derivation Lie algebra over quantum torus
    Xu, Shuoyang
    Yue, Xiaoqing
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) : 3152 - 3162
  • [32] ADJOINT REPRESENTATION OF A FREE LIE-ALGEBRA
    PATSOURAKOS, A
    COMMUNICATIONS IN ALGEBRA, 1987, 15 (10) : 2199 - 2207
  • [33] Generalized bessel functions and Lie algebra representation
    Khan, Subuhi
    Yasmin, Ghazala
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2005, 8 (04) : 299 - 313
  • [34] Generalized Bessel Functions and Lie Algebra Representation
    Subuhi Khan
    Ghazala Yasmin
    Mathematical Physics, Analysis and Geometry, 2006, 8 : 299 - 313
  • [35] A Candidate for the Abelian Category of Mixed Elliptic Motives
    Patashnick, Owen
    JOURNAL OF K-THEORY, 2013, 12 (03) : 569 - 600
  • [36] A note on elliptic coordinates on the Lie algebra e(3)
    Tsiganov, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (38): : L571 - L574
  • [37] Construction of the elliptic gaudin system based on Lie algebra
    Cao L.-K.
    Liang H.
    Peng D.-T.
    Yang T.
    Yue R.-H.
    Frontiers of Physics in China, 2007, 2 (2): : 234 - 237
  • [38] Representation of elliptic Ding-Iohara algebra
    Lifang Wang
    Ke Wu
    Jie Yang
    Zifeng Yang
    Frontiers of Mathematics in China, 2020, 15 : 155 - 166
  • [39] Representation of elliptic Ding-Iohara algebra
    Wang, Lifang
    Wu, Ke
    Yang, Jie
    Yang, Zifeng
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 155 - 166
  • [40] The derivation algebra of the cartan-type Lie superalgebra HO
    Liu, WD
    Zhang, YZ
    Wang, XL
    JOURNAL OF ALGEBRA, 2004, 273 (01) : 176 - 205