On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization

被引:0
|
作者
M. J. Cánovas
F. J. Gómez-Senent
J. Parra
机构
[1] Miguel Hernández University of Elche,Operations Research Center
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Strong Lipschitz stability; Metric regularity; Lipschitz modulus; Optimal set mapping; Linear semi-infinite programming; 90C34; 49J53; 90C31; 90C05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to quantify the Lipschitzian behavior of the optimal solutions set in linear optimization under perturbations of the objective function and the right hand side of the constraints (inequalities). In our model, the set indexing the constraints is assumed to be a compact metric space and all coefficients depend continuously on the index. The paper provides a lower bound on the Lipschitz modulus of the optimal set mapping (also called argmin mapping), which, under our assumptions, is single-valued and Lipschitz continuous near the nominal parameter. This lower bound turns out to be the exact modulus in ordinary linear programming, as well as in the semi-infinite case under some additional hypothesis which always holds for dimensions n ⩽ 3. The expression for the lower bound (or exact modulus) only depends on the nominal problem’s coefficients, providing an operative formula from the practical side, specially in the particular framework of ordinary linear programming, where it constitutes the sharp Lipschitz constant. In the semi-infinite case, the problem of whether or not the lower bound equals the exact modulus for n > 3 under weaker hypotheses (or none) remains as an open problem.
引用
收藏
页码:511 / 538
页数:27
相关论文
共 50 条
  • [21] GENERIC PROPERTIES IN THE LINEAR VECTOR SEMI-INFINITE OPTIMIZATION
    TODOROV, MI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (04): : 27 - 29
  • [22] Recent contributions to linear semi-infinite optimization: an update
    M. A. Goberna
    M. A. López
    Annals of Operations Research, 2018, 271 : 237 - 278
  • [23] Recent contributions to linear semi-infinite optimization: an update
    Goberna, M. A.
    Lopez, M. A.
    ANNALS OF OPERATIONS RESEARCH, 2018, 271 (01) : 237 - 278
  • [24] Constraint qualifications in linear vector semi-infinite optimization
    Goberna, M. A.
    Guerra-Vazquez, F.
    Todorov, M. I.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 227 (01) : 12 - 21
  • [25] On linear and linearized generalized semi-infinite optimization problems
    Rückmann, JJ
    Stein, O
    ANNALS OF OPERATIONS RESEARCH, 2001, 101 (1-4) : 191 - 208
  • [26] CONTINUITY PROPERTIES IN SEMI-INFINITE PARAMETRIC LINEAR OPTIMIZATION
    COLGEN, R
    SCHNATZ, K
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1981, 3 (04) : 451 - 460
  • [27] On Linear and Linearized Generalized Semi-Infinite Optimization Problems
    Jan-J. Rückmann
    Oliver Stein
    Annals of Operations Research, 2001, 101 : 191 - 208
  • [28] New applications of linear semi-infinite optimization theory in copositive optimization
    Goberna, Miguel A.
    Ridolfi, Andrea B.
    de Serio, Virginia N. Vera
    OPTIMIZATION, 2024,
  • [29] Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization
    Canovas, M. J.
    Hantoute, A.
    Parra, J.
    Toledo, F. J.
    OPTIMIZATION LETTERS, 2015, 9 (03) : 513 - 521
  • [30] Spare simple MKKM with semi-infinite linear program optimization
    Huang, Yuxin
    Li, Miaomiao
    Tu, Wenxuan
    Liu, Jiyuan
    Ying, Jiahao
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (02) : 1113 - 1128