On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization

被引:0
|
作者
M. J. Cánovas
F. J. Gómez-Senent
J. Parra
机构
[1] Miguel Hernández University of Elche,Operations Research Center
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Strong Lipschitz stability; Metric regularity; Lipschitz modulus; Optimal set mapping; Linear semi-infinite programming; 90C34; 49J53; 90C31; 90C05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to quantify the Lipschitzian behavior of the optimal solutions set in linear optimization under perturbations of the objective function and the right hand side of the constraints (inequalities). In our model, the set indexing the constraints is assumed to be a compact metric space and all coefficients depend continuously on the index. The paper provides a lower bound on the Lipschitz modulus of the optimal set mapping (also called argmin mapping), which, under our assumptions, is single-valued and Lipschitz continuous near the nominal parameter. This lower bound turns out to be the exact modulus in ordinary linear programming, as well as in the semi-infinite case under some additional hypothesis which always holds for dimensions n ⩽ 3. The expression for the lower bound (or exact modulus) only depends on the nominal problem’s coefficients, providing an operative formula from the practical side, specially in the particular framework of ordinary linear programming, where it constitutes the sharp Lipschitz constant. In the semi-infinite case, the problem of whether or not the lower bound equals the exact modulus for n > 3 under weaker hypotheses (or none) remains as an open problem.
引用
收藏
页码:511 / 538
页数:27
相关论文
共 50 条
  • [1] On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization
    Canovas, M. J.
    Gomez-Senent, F. J.
    Parra, J.
    SET-VALUED ANALYSIS, 2008, 16 (5-6): : 511 - 538
  • [2] Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization
    M. J. Cánovas
    A. Hantoute
    J. Parra
    F. J. Toledo
    Journal of Optimization Theory and Applications, 2014, 160 : 111 - 126
  • [3] Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization
    Canovas, M. J.
    Hantoute, A.
    Parra, J.
    Toledo, F. J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 111 - 126
  • [4] CALMNESS MODULUS OF LINEAR SEMI-INFINITE PROGRAMS
    Canovas, M. J.
    Kruger, A. Y.
    Lopez, M. A.
    Parra, J.
    Thera, M. A.
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 29 - 48
  • [5] Pseudo-Lipschitz property of linear semi-infinite vector optimization problems
    Chuong, T. D.
    Huy, N. Q.
    Yao, J. C.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 200 (03) : 639 - 644
  • [6] LIPSCHITZ MODULUS IN CONVEX SEMI-INFINITE OPTIMIZATION VIA D. C. FUNCTIONS
    Canovas, Maria J.
    Hantoute, Abderrahim
    Lopez, Marco A.
    Parra, Juan
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (04): : 763 - 781
  • [7] Lipschitz continuity of the optimal value via bounds on the optimal set in linear semi-infinite optimization
    Canovas, Maria J.
    Lopez, Marco A.
    Parra, Juan
    Toledo, F. Javier
    MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (03) : 478 - 489
  • [8] A Generic Result in Linear Semi-Infinite Optimization
    Miguel A. Goberna
    Marco A. López
    Maxim I. Todorov
    Applied Mathematics and Optimization, 2003, 48 : 181 - 193
  • [9] A generic result in linear semi-infinite optimization
    Goberna, MA
    López, MA
    Todorov, MI
    APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 48 (03): : 181 - 193
  • [10] Inverse optimization in semi-infinite linear programs
    Ghate, Archis
    OPERATIONS RESEARCH LETTERS, 2020, 48 (03) : 278 - 285