A review of technological improvements in laser-based powder bed fusion of metal printers

被引:1
|
作者
AmirMahyar Khorasani
Ian Gibson
Jithin Kozhuthala Veetil
Amir Hossein Ghasemi
机构
[1] Deakin University,School of Engineering
[2] University of Twente,Fraunhofer Centre for Complex System Engineering, Department of Design, Production & Management
关键词
Additive manufacturing; Powder bed fusion; Laser; Industrial improvement;
D O I
暂无
中图分类号
学科分类号
摘要
Additive manufacturing (AM) is an emerging process that has been extremely improved in terms of technology and application in recent years. In this technology review, new industrial improvements in laser powder bed fusion (LPBF) of metals are discussed. LPBF has the lowest build rate among all AM processes that produce metals such as electron beam powder bed fusion, direct energy deposition, binder jetting and sheet lamination. The findings of the current research show that the most innovations and future directions of LPBF printers are toward increasing the speed of the process by using interchangeable feedstock chamber, closed-loop control powder handling, automated powder sieving, multi-layer concurrent printing, 2-axis coating and multi powder hoppers. To increase the speed of the process, the new improvements for transferring time and using fast lasers are presented. Another innovation in the building of LPBF printers is enhancing part quality by improving lasers with the shorter beam diameter, multi-lasers, uniform inert gas flow, accurate positioning systems, using high vacuum systems and using sensors and automation.
引用
收藏
页码:191 / 209
页数:18
相关论文
共 50 条
  • [31] Comprehensive review on residual stress control strategies in laser-based powder bed fusion process– Challenges and opportunities
    Kumar V.P.
    Jebaraj A.V.
    Lasers in Manufacturing and Materials Processing, 2023, 10 (03) : 400 - 442
  • [32] Laser Powder Bed Fusion of Powder Material: A Review
    Zhao, Xi
    Wang, Tong
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (06) : 1439 - 1454
  • [33] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Leary, Martin
    Cordova, Laura
    Sharabian, Elmira
    Farabi, Ehsan
    Gibson, Ian
    Brandt, Milan
    Rolfe, Bernard
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (3-4): : 2345 - 2362
  • [34] Expanding the capabilities of laser-based powder bed fusion of polymers through the use of electrophotographic powder application
    Kopp, Sebastian-Paul
    Medvedev, Vadim
    Frick, Thomas
    Roth, Stephan
    JOURNAL OF LASER APPLICATIONS, 2022, 34 (04)
  • [35] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Mahyar Khorasani
    AmirHossein Ghasemi
    Martin Leary
    Laura Cordova
    Elmira Sharabian
    Ehsan Farabi
    Ian Gibson
    Milan Brandt
    Bernard Rolfe
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 2345 - 2362
  • [36] On the probabilistic prediction for extreme geometrical defects induced by laser-based powder bed fusion
    Kousoulas, Panayiotis
    Guo, Y. B.
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2023, 41 : 124 - 134
  • [37] Advances in polishing of internal structures on parts made by laser-based powder bed fusion
    Mingyue Shen
    Fengzhou Fang
    Frontiers of Mechanical Engineering, 2023, 18
  • [38] MACHINE LEARNING ASSISTED PREDICTION OF THE MANUFACTURABILITY OF LASER-BASED POWDER BED FUSION PROCESS
    Zhang, Ying
    Dong, Guoying
    Yang, Sheng
    Zhao, Yaoyao Fiona
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 1, 2020,
  • [39] Correlation analysis of feedstock flowability and temperature for laser-based powder bed fusion of polymers
    Steffen, Raphael Timothy
    Tucker, Michael Robert
    Sillani, Francesco
    Schuetz, Denis
    Bambach, Markus
    RAPID PROTOTYPING JOURNAL, 2024,
  • [40] Laser-based powder bed fusion of niobium with different build-up rates
    Tjorben Griemsmann
    Arvid Abel
    Christian Hoff
    Jörg Hermsdorf
    Markus Weinmann
    Stefan Kaierle
    The International Journal of Advanced Manufacturing Technology, 2021, 114 : 305 - 317