Partitioned half-explicit Runge-Kutta methods for differential-algebraic systems of index 2

被引:0
|
作者
A. Murua
机构
[1] Konputazio Zientziak eta A. A. Informatika Fakultatea EHU/UPV,
来源
Computing | 1997年 / 59卷
关键词
65L05; Differential-algebraic systems of index 2; constrained mechanical systems; half-explicit Runge-Kutta methods;
D O I
暂无
中图分类号
学科分类号
摘要
A class of half-explicit methods for index 2 differential-algebraic systems in Hessenberg form is proposed, which takes advantage of the partitioned structure of such problems. For this family of methods, which we call partitioned half-explicit Runge-Kutta methods, a better choice in the parameters of the method than for previously available half-explicit Runge-Kutta methods can be made. In particular we construct a family of 6-stage methods of order 5, and determine its parameters (based on the coefficients of the successful explicit Runge-Kutta method DOPRI5) in order to optimize the local error coefficients. Numerical experiments demonstrate the efficiency of this method for the solution of constrained multi-body systems.
引用
收藏
页码:43 / 61
页数:18
相关论文
共 50 条
  • [42] A Runge-Kutta method for index 1 stochastic differential-algebraic equations with scalar noise
    Kuepper, Dominique
    Kvaerno, Anne
    Roessler, Andreas
    BIT NUMERICAL MATHEMATICS, 2012, 52 (02) : 437 - 455
  • [43] A Runge-Kutta method for index 1 stochastic differential-algebraic equations with scalar noise
    Dominique Küpper
    Anne Kværnø
    Andreas Rößler
    BIT Numerical Mathematics, 2012, 52 : 437 - 455
  • [44] Half-Explicit Exponential Runge–Kutta Methods for Index-1 DAEs in Helicopter Simulation
    Elena Kohlwey
    Melven Röhrig-Zöllner
    Mathematics in Computer Science, 2019, 13 : 341 - 365
  • [45] Generalization of partitioned Runge-Kutta methods for adjoint systems
    Matsuda, Takeru
    Miyatake, Yuto
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [46] Asymptotic stability analysis of Runge-Kutta methods for differential-algebraic equations with multiple delays
    Wu, Meijun
    Yu, Quanhong
    Kuang, Jiaoxun
    Tian, Hongjiong
    CALCOLO, 2021, 58 (03)
  • [47] ASYMPTOTIC STABILITY OF LINEAR NEUTRAL DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS AND RUNGE-KUTTA METHODS
    Tian, Hongjiong
    Yu, Quanhong
    Kuang, Jiaoxun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 68 - 82
  • [48] Stability analysis and classification of Runge-Kutta methods for index 1 stochastic differential-algebraic equations with scalar noise
    Kuepper, Dominique
    Kvaerno, Anne
    Rossler, Andreas
    APPLIED NUMERICAL MATHEMATICS, 2015, 96 : 24 - 44
  • [49] Multirate Partitioned Runge-Kutta Methods
    M. Günther
    A. Kværnø
    P. Rentrop
    BIT Numerical Mathematics, 2001, 41 : 504 - 514
  • [50] Multirate partitioned Runge-Kutta methods
    Günther, M
    Kværno, A
    Rentrop, P
    BIT, 2001, 41 (03): : 504 - 514