Development of Condensing Mesh Method for Corner Domain at Numerical Simulation Magnetic System

被引:0
|
作者
Perepelkin E. [1 ]
Tarelkin A. [1 ]
Polyakova R. [2 ]
Kovalenko A. [2 ]
机构
[1] Lomonosov Moscow State University, GSP-1, Moscow
[2] Joint Institute for Nuclear Research, Dubna, 141980, Moscow oblast
关键词
D O I
10.1134/S1547477118030147
中图分类号
学科分类号
摘要
A magnetostatic problem arises in searching for the distribution of the magnetic field generated by magnet systems of many physics research facilities, e.g., accelerators. The domain in which the boundaryvalue problem is solved often has a piecewise smooth boundary. In this case, numerical calculations of the problem require the consideration of the solution behavior in the corner domain. In this work we obtained the upper estimation of the magnetic field growth and propose a method of condensing the differential grid near the corner domain of vacuum in case of 3-dimensional space based on this estimation. An example of calculating a real model problem for SDP NICA in the domain containing a corner point is given. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:331 / 335
页数:4
相关论文
共 50 条
  • [21] Numerical simulation of a Trichel pulse in oxygen with a particle-mesh method
    Soria, C
    Pontiga, F
    Castellanos, A
    INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES, VOL IV, PROCEEDINGS, 1999, : 205 - 206
  • [22] Numerical simulation of aerodynamic problems based on adaptive mesh refinement method
    Struchkov, A., V
    Kozelkov, A. S.
    Volkov, K. N.
    Kurkin, A. A.
    Zhuckov, R. N.
    Sarazov, A., V
    ACTA ASTRONAUTICA, 2020, 172 (172) : 7 - 15
  • [23] Numerical Simulation of Wave Overtopping using Mesh Free SPH Method
    De Chowdhury, S.
    PROCEEDINGS OF THE 35TH IAHR WORLD CONGRESS, VOLS I AND II, 2013, : 592 - 603
  • [24] An Efficient Numerical Method for Time Domain Computational Electromagnetic Simulation
    Francomano, E.
    Paliaga, M.
    Ala, G.
    Giglia, G.
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [25] Study on Numerical Simulation Method of Gust Response in Time Domain
    Wang, Jun-Li
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHANICS AND CIVIL ENGINEERING, 2014, 7 : 72 - 76
  • [26] A domain decomposition method for numerical simulation of the elastic wave propagation
    Huang, ZP
    Zhang, M
    Wu, WQ
    Dong, LG
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2004, 47 (06): : 1094 - 1100
  • [27] Direct numerical simulation of particulate flows with a fictitious domain method
    Yu, Zhaosheng
    Shao, Xueming
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2010, 36 (02) : 127 - 134
  • [28] A time domain numerical simulation method for nonlinear ship motions
    Liu, Shukui
    Papanikolaou, Apostolos
    Duan, Wenyang
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2006, 27 (SUPPL. 2): : 177 - 185
  • [29] Development of the integration variable selection method in numerical simulation of electromagnetic wave propagation in the time domain mode
    Klimov, Konstantin N.
    Epaneshnikova, Irina K.
    Belevtsev, Andrey M.
    Konov, Kirill I.
    Serebryannikov, Sergej V.
    Cherkasov, Anatoliy P.
    Serebryannikov, Sergej S.
    Boldyreff, Anton S.
    MILLIMETRE WAVE AND TERAHERTZ SENSORS AND TECHNOLOGY XII, 2019, 11164
  • [30] Numerical simulation of Bridgman method for tetragonal system
    Zhang, Hai-Bin
    Shen, Ding-Zhong
    Ren, Guo-Hao
    Deng, Qun
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2003, 32 (05):