The Hilbert function of some Hadamard products

被引:0
|
作者
C. Bocci
G. Calussi
G. Fatabbi
A. Lorenzini
机构
[1] Università di Siena,Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
[2] Università di Firenze,Dipartimento di Matematica e Informatica “Ulisse Dini”
[3] Università di Perugia,Dipartimento di Matematica e Informatica
来源
Collectanea Mathematica | 2018年 / 69卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we address the Hadamard product of not necessarily generic linear varieties, looking in particular at its Hilbert function. We find that the Hilbert function of the Hadamard product X⋆Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\star Y$$\end{document} of two varieties, with dim(X),dim(Y)≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim (X), \dim (Y)\le 1$$\end{document}, is the product of the Hilbert functions of the original varieties X and Y. Moreover, the same result is obtained for generic linear varieties X and Y as a consequence of our showing that their Hadamard product is projectively equivalent to a Segre embedding.
引用
收藏
页码:205 / 220
页数:15
相关论文
共 50 条
  • [41] Hadamard products and NK space
    Ahmed, A. El-Sayed
    Bakhit, M. A.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (1-2) : 33 - 43
  • [42] On the asymptotic expansion of Hadamard products
    Sauer, A
    MATHEMATISCHE NACHRICHTEN, 1997, 186 : 243 - 250
  • [43] Hadamard products and binomial ideals
    Atar, Buesra
    Bhaskara, Kieran
    Cook, Adrian
    Da Silva, Sergio
    Harada, Megumi
    Rajchgot, Jenna
    Van Tuyl, Adam
    Wang, Runyue
    Yang, Jay
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)
  • [44] HADAMARD PRODUCTS AND SCHWARTZ FUNCTIONS
    Hegde, Devadatta G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (10) : 4537 - 4541
  • [45] Geometric means and Hadamard products
    Feng, BQ
    Tonge, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (04): : 559 - 564
  • [46] Semicircle law for Hadamard products
    Bai, Z. D.
    Zhang, L. X.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 473 - 495
  • [47] Narrower eigenbounds for Hadamard products
    Im, EI
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 264 : 141 - 144
  • [48] Hadamard products and QK spaces
    Wulan, Hasi
    Zhang, Yanhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 1142 - 1150
  • [49] HADAMARD PRODUCTS AND MULTIVARIATE ANALYSIS
    STYAN, GPH
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (03): : 1149 - &
  • [50] Hadamard products and BPS networks
    Elmi, Mohamed
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (07):