In this paper we address the Hadamard product of not necessarily generic linear varieties, looking in particular at its Hilbert function. We find that the Hilbert function of the Hadamard product X⋆Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X\star Y$$\end{document} of two varieties, with dim(X),dim(Y)≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dim (X), \dim (Y)\le 1$$\end{document}, is the product of the Hilbert functions of the original varieties X and Y. Moreover, the same result is obtained for generic linear varieties X and Y as a consequence of our showing that their Hadamard product is projectively equivalent to a Segre embedding.
机构:
NE Normal Univ, KLASMOE, Sch Math & Stat, Changchun 130024, Peoples R ChinaNE Normal Univ, KLASMOE, Sch Math & Stat, Changchun 130024, Peoples R China
Bai, Z. D.
Zhang, L. X.
论文数: 0引用数: 0
h-index: 0
机构:NE Normal Univ, KLASMOE, Sch Math & Stat, Changchun 130024, Peoples R China