D2-brane Chern-Simons theories: F -maximization = a-maximization

被引:0
|
作者
Martin Fluder
James Sparks
机构
[1] University of Oxford,Mathematical Institute
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; Chern-Simons Theories; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We study a system of N D2-branes probing a generic Calabi-Yau three-fold singularity in the presence of a non-zero quantized Romans mass n. We argue that the low-energy effective cN=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} Chern-Simons quiver gauge theory flows to a superconformal fixed point in the IR, and construct the dual AdS4 solution in massive IIA supergravity. We compute the free energy F of the gauge theory on S3 using localization. In the large N limit we find F = c (nN )1/3a2/3, where c is a universal constant and a is the a-function of the “parent” four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} theory on N D3-branes probing the same Calabi-Yau singularity. It follows that maximizing F over the space of admissible R-symmetries is equivalent to maximizing a for this class of theories. Moreover, we show that the gauge theory result precisely matches the holographic free energy of the supergravity solution, and provide a similar matching of the VEV of a BPS Wilson loop operator.
引用
收藏
相关论文
共 50 条
  • [41] Brane gravity in 4D from Chern-Simons gravity theory
    Diaz, R.
    Gomez, F.
    Pinilla, M.
    Salgado, P.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (06):
  • [42] Conformal supergravities as Chern-Simons theories revisited
    Sergei M. Kuzenko
    Gabriele Tartaglino-Mazzucchelli
    Journal of High Energy Physics, 2013
  • [43] Magnetic symmetries and vortices in Chern-Simons theories
    Dunne, G
    Kovner, A
    Tekin, B
    PHYSICAL REVIEW D, 2001, 63 (02):
  • [44] Covariant lagrangian formalism for chern-simons theories
    Borowiec, A.
    Fatibene, L.
    Francaviglia, M.
    Mercadante, S.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (02) : 277 - 283
  • [45] ON WILSON LOOPS IN ABELIAN CHERN-SIMONS THEORIES
    HANSSON, TH
    KARLHEDE, A
    ROCEK, M
    PHYSICS LETTERS B, 1989, 225 (1-2) : 92 - 94
  • [46] On Symmetries of Chern-Simons and BF Topological Theories
    T. A. Ivanova
    A. D. Popov
    Journal of Nonlinear Mathematical Physics, 2000, 7 (4) : 480 - 494
  • [47] Topological reflected entropy in Chern-Simons theories
    Berthiere, Clement
    Chen, Hongjie
    Liu, Yuefeng
    Chen, Bin
    PHYSICAL REVIEW B, 2021, 103 (03)
  • [48] Topological unitarity identities in Chern-Simons theories
    Fainberg, VY
    Shikakhwa, MS
    PHYSICAL REVIEW D, 1996, 53 (10): : 5765 - 5770
  • [49] N=8 superconformal Chern-Simons theories
    Bandres, Miguel A.
    Lipstein, Arthur E.
    Schwarz, John H.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05):
  • [50] QUANTIZATION AMBIGUITIES FOR CHERN-SIMONS TOPOLOGICAL THEORIES
    IMBIMBO, C
    PHYSICS LETTERS B, 1991, 258 (3-4) : 353 - 358