Geometric interpolation by planar cubic G1 splines

被引:0
|
作者
Jernej Kozak
Marjetka Krajnc
机构
[1] University of Ljubljana,FMF and IMFM
[2] University of Ljubljana,IMFM
来源
BIT Numerical Mathematics | 2007年 / 47卷
关键词
cubic spline curve; continuity; geometric interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, geometric interpolation by G1 cubic spline is studied. A wide class of sufficient conditions that admit a G1 cubic spline interpolant is determined. In particular, convex data as well as data with inflection points are included. The existence requirements are based upon geometric properties of data entirely, and can be easily verified in advance. The algorithm that carries out the verification is added.
引用
收藏
页码:547 / 563
页数:16
相关论文
共 50 条
  • [31] INTERPOLATION AND APPROXIMATION BY MONOTONE CUBIC-SPLINES
    ANDERSSON, LE
    ELFVING, T
    JOURNAL OF APPROXIMATION THEORY, 1991, 66 (03) : 302 - 333
  • [32] CONVEX INTERVAL INTERPOLATION WITH CUBIC-SPLINES
    SCHMIDT, JW
    BIT, 1986, 26 (03): : 377 - 387
  • [33] CONVERGENCE OF CUBIC INTERPOLATION SPLINES TO A CONTINUOUS FUNCTION
    PRIVALOV, AA
    MATHEMATICAL NOTES, 1979, 25 (5-6) : 349 - 359
  • [34] Lagrange interpolation by C1 cubic splines on triangulated quadrangulations
    Nürnberger, G
    Schumaker, LL
    Zeilfelder, F
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (3-4) : 357 - 380
  • [35] Monotone and convex interpolation by weighted cubic splines
    Kvasov, B. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (10) : 1428 - 1439
  • [36] Monotone and convex interpolation by weighted cubic splines
    B. I. Kvasov
    Computational Mathematics and Mathematical Physics, 2013, 53 : 1428 - 1439
  • [37] On semi-cardinal interpolation with cubic splines
    Bejancu, Aurelian
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2011, 38 (1A): : 25 - 37
  • [38] Shape-Preserving Interpolation by Cubic Splines
    Volkov, Yu. S.
    Bogdanov, V. V.
    Miroshnichenko, V. L.
    Shevaldin, V. T.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 798 - 805
  • [39] Shape-preserving interpolation by cubic splines
    Yu. S. Volkov
    V. V. Bogdanov
    V. L. Miroshnichenko
    V. T. Shevaldin
    Mathematical Notes, 2010, 88 : 798 - 805
  • [40] Cubic splines and fuzzy interpolation: A visual comparison
    Whalen, T
    Schott, B
    1998 CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1998, : 226 - 230