On the divergence of Fourier series of functions in several variablesО расходимости рядов Фурье функций многих переменных

被引:0
|
作者
L. Gogoladze
V. Tsagareishvili
机构
[1] I. Javakhishvili Tbilisi State University,
来源
Analysis Mathematica | 2013年 / 39卷
关键词
Fourier Series; Continuous Partial Derivative; Absolute Convergence; Minkowski Inequality; Orthogonal Series;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the problems of divergence of the series from absolute values of the Fourier coefficients of functions in several variables. It is proved that as the dimension of the space increases, the absolute convergence of Fourier series with respect to any complete orthnormal system (ONS) of functions with continuous partial derivatives becomes worse. For instance, for any ɛ ∈ (0, 2) there exists a function in variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k > \frac{{2(2 - \varepsilon )}} {\varepsilon }$$\end{document} having all the continuous partial derivatives, however the series of absolute values of its coefficients with respect to any complete orthnormal system diverges in power 2 − ɛ.
引用
下载
收藏
页码:163 / 178
页数:15
相关论文
共 50 条