Universal Star Products

被引:0
|
作者
Mourad Ammar
Véronique Chloup
Simone Gutt
机构
[1] Université du Luxembourg,
[2] Université Paul Verlaine - Metz,undefined
[3] LMAM Ile du Saulcy,undefined
[4] Université Libre de Bruxelles,undefined
来源
关键词
53D55; 81S10; star products; formality; universal differential operators;
D O I
暂无
中图分类号
学科分类号
摘要
One defines the notion of universal deformation quantization: given any manifold M, any Poisson structure Λ on M and any torsionfree linear connection ∇ on M, a universal deformation quantization associates to this data a star product on (M, Λ) given by a series of bidifferential operators whose corresponding tensors are given by universal polynomial expressions in the Poisson tensor Λ, the curvature tensor R and their covariant iterated derivatives. Such universal deformation quantization exist. We study their unicity at order 3 in the deformation parameter, computing the appropriate universal Poissoncohomology.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 50 条
  • [21] DERIVED UNIVERSAL MASSEY PRODUCTS
    Muro, Fernando
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2023, 25 (01) : 189 - 218
  • [22] On universal quotient Blaschke products
    Li, Liulan
    Qian, Tao
    Wang, Shilin
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (03) : 456 - 470
  • [23] Wreath Products and Universal Equivalence
    S. V. Morozova
    Siberian Mathematical Journal, 2003, 44 : 1043 - 1048
  • [24] Star products and the Landau problem
    Lee, J
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 (04) : 571 - 576
  • [25] Obstructions for twist star products
    Bieliavsky, Pierre
    Esposito, Chiara
    Waldmann, Stefan
    Weber, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (05) : 1341 - 1350
  • [26] Star products for SL(2)
    Arnal, D
    Yahyai, M
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (01) : 17 - 26
  • [27] Projectable star-products
    Lares, SA
    CONFERENCE MOSHE FLATO 1999, VOL II: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 22 : 37 - 44
  • [28] Star products and geometric algebra
    Henselder, P
    Hirshfeld, AC
    Spernat, T
    ANNALS OF PHYSICS, 2005, 317 (01) : 107 - 129
  • [29] Weyl quantization and star products
    Bowes, D
    Hannabuss, KC
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (04) : 319 - 348
  • [30] Star products on coadjoint orbits
    Lledó, MA
    PHYSICS OF ATOMIC NUCLEI, 2001, 64 (12) : 2136 - 2138