Design and performance investigation of short channel bottom-contact organic thin-film transistors

被引:0
|
作者
Farkhanda Ana
Najeeb-ud Din
机构
[1] National Institute of Technology,Department of Electronics and Communication
来源
关键词
DIBL; Impact ionization; Mobility degradation; Organic thin-film transistors; Pentacene; Poole–Frenkel mobility; Threshold voltage;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an investigation on the design of organic thin-film transistors (OTFTs) with short channel lengths required to achieve higher integration density organic circuits for various DC and RF applications. The DC and AC performance parameters of an OTFT with channel lengths 5, 2, 1.5, 1.0, 0.9 and 0.7 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} have been evaluated through carefully calibrated two-dimensional numerical simulation. The designed OTFT uses pentacene as the active layer in the bottom-contact configuration. The various performance parameter metrics, i.e., threshold voltage (VTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}_\mathrm{TH}$$\end{document}), transconductance (GM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_\mathrm{M}$$\end{document}), gain (AV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}_\mathrm{V}$$\end{document}), ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{ON}$$\end{document}/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{OFF}$$\end{document}, DIBL, cutoff frequency (fT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_\mathrm{T}$$\end{document}) and breakdown voltage (VBR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}_\mathrm{BR}$$\end{document}), have been evaluated. The results have revealed that OTFTs with short channel lengths show improved performance compared to long channel transistors. The second-order effects of VTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{TH}$$\end{document} roll-off and DIBL are less pronounced in OTFTs. Results show that the VTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{V}_\mathrm{TH}$$\end{document} reduces only by 10.73% from L=5μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=5\,\upmu \hbox {m}$$\end{document} to L=0.7μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=0.7 \,\upmu \hbox {m}$$\end{document}. The results have shown that OTFTs have a high ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{ON}$$\end{document}/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{OFF}$$\end{document} ratio of the order of 1013\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{13}$$\end{document} and thus are effective for fast switching applications. The cutoff frequency of the simulated device for L=0.7μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=0.7\,\upmu $$\end{document} m is 2.3 GHz suggesting the application of OTFTs for RF applications. The role of trap states on the device conduction has also been investigated. The simulation study has revealed that OTFTs exhibit well-defined mobility degradation and impact ionization behavior which becomes pronounced for channel lengths below 1 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}. Further the capacitive behavior of the designed device has been evaluated, and it has been observed that the device capacitance can be defined from the MOSFET theory except for the role of trap states.
引用
收藏
页码:1315 / 1323
页数:8
相关论文
共 50 条
  • [1] Design and performance investigation of short channel bottom-contact organic thin-film transistors
    Ana, Farkhanda
    Din, Najeeb-ud
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17 (03) : 1315 - 1323
  • [2] High-Performance Bottom-Contact Organic Thin-Film Transistors by Improving the Lateral Contact
    Zhang, Xiaodong
    Wang, Zi
    Zhou, Xu
    Wang, Zhifang
    Huang, Lizhen
    Chi, Lifeng
    [J]. ADVANCED ELECTRONIC MATERIALS, 2017, 3 (11):
  • [3] Injection-limited contact in bottom-contact pentacene organic thin-film transistors
    Hong, Y.
    Yan, F.
    Migliorato, P.
    Han, S. H.
    Jang, J.
    [J]. THIN SOLID FILMS, 2007, 515 (7-8) : 4032 - 4035
  • [4] Performance improvement in bottom-contact pentacene organic thin-film transistors by the PMMA layer insertion
    Lyoo, Ki Hyun
    Kim, Byeong-Ju
    Lee, Cheon An
    Jung, Keum-Dong
    Park, Dong-Wook
    Park, Byung-Gook
    Lee, Jong Duk
    [J]. IMID/IDMC 2006: THE 6TH INTERNATIONAL MEETING ON INFORMATION DISPLAY/THE 5TH INTERNATIONAL DISPLAY MANUFACTURING CONFERENCE, DIGEST OF TECHNICAL PAPERS, 2006, : 1139 - 1141
  • [5] Bottom-Contact n-Channel Organic Thin-Film Transistors with Naphthalene-Based Derivatives
    Kao, Chia-Chun
    Lin, Pang
    Chan, Li-Hsin
    Lee, Cheng-Chung
    Ho, Jia-Chong
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (06) : H214 - H217
  • [6] Bottom-Contact Pentacene Thin-Film Transistors on Silicon Nitride
    Stott, James
    Kumatani, Akichika
    Minari, Takeo
    Tsukagoshi, Kazuhito
    Heutz, Sandrine
    Aeppli, Gabriel
    Nathan, Arokia
    [J]. IEEE ELECTRON DEVICE LETTERS, 2011, 32 (09) : 1305 - 1307
  • [7] Reliability issues of bottom-contact pentacene thin-film transistors
    Lee, Jong Duk
    Park, Byung-Gook
    Jung, Keum-Dong
    [J]. SAINS MALAYSIANA, 2008, 37 (03): : 295 - 298
  • [8] Structure-Dependent Contact Barrier Effects in Bottom-Contact Organic Thin-Film Transistors
    Feng, Linrun
    Xu, Xiaoli
    Guo, Xiaojun
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (12) : 3382 - 3388
  • [9] Thickness dependence of mobility of pentacene planar bottom-contact organic thin-film transistors
    Xu, M.
    Nakamura, M.
    [J]. THIN SOLID FILMS, 2008, 516 (09) : 2776 - 2778
  • [10] Effect of electrode thickness on bottom-contact pentacene thin-film transistors
    Kim, Chaeho
    Jeon, D.
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (03) : 1464 - 1467