A fractional calculus approach to nonlocal elasticity

被引:0
|
作者
A. Carpinteri
P. Cornetti
A. Sapora
机构
[1] Politecnico di Torino,Department of Structural Engineering and Geotechnics
关键词
European Physical Journal Special Topic; Fractional Derivative; Fractional Calculus; Fractional Integral; Attenuation Function;
D O I
暂无
中图分类号
学科分类号
摘要
If the attenuation function of strain is expressed as a power law, the formalism of fractional calculus may be used to handle Eringen nonlocal elastic model. Aim of the present paper is to provide a mechanical interpretation to this nonlocal fractional elastic model by showing that it is equivalent to a discrete, point-spring model. A one-dimensional geometry is considered; the static, kinematic and constitutive equations are presented and the governing fractional differential equation highlighted. Two numerical procedures to solve the fractional equation are finally implemented and applied to study the strain field in a finite bar under given edge displacements.
引用
收藏
相关论文
共 50 条
  • [31] Fractional calculus approach to texture of digital image
    Pu, Yifei
    [J]. 2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 1002 - 1006
  • [32] RELAXATION IN FILLED POLYMERS - A FRACTIONAL CALCULUS APPROACH
    METZLER, R
    SCHICK, W
    KILIAN, HG
    NONNENMACHER, TF
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (16): : 7180 - 7186
  • [33] Electrostatics in fractal geometry: Fractional calculus approach
    Baskin, Emmanuel
    Iomin, Alexander
    [J]. CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 335 - 341
  • [34] A Modified Fractional Calculus Approach to Model Hysteresis
    Sunny, Mohammed Rabius
    Kapania, Rakesh K.
    Moffitt, Ronald D.
    Mishra, Amitabh
    Goulbourne, Nakhiah
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2010, 77 (03): : 1 - 8
  • [35] NONLOCAL ELASTICITY
    ERINGEN, AC
    EDELEN, DGB
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1972, 10 (03) : 233 - &
  • [36] Variational calculus involving nonlocal fractional derivative with Mittag-Leffler kernel
    Chatibi, Y.
    El Kinani, E. H.
    Ouhadan, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 118 : 117 - 121
  • [37] An unified formulation of strong non-local elasticity with fractional order calculus
    Alotta, Gioacchino
    Di Paola, Mario
    Pinnola, Francesco Paolo
    [J]. MECCANICA, 2022, 57 (04) : 793 - 805
  • [38] An unified formulation of strong non-local elasticity with fractional order calculus
    Gioacchino Alotta
    Mario Di Paola
    Francesco Paolo Pinnola
    [J]. Meccanica, 2022, 57 : 793 - 805
  • [39] Fractional characteristic functions, and a fractional calculus approach for moments of random variables
    Živorad Tomovski
    Ralf Metzler
    Stefan Gerhold
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 1307 - 1323
  • [40] Fractional characteristic functions, and a fractional calculus approach for moments of random variables
    Tomovski, Zivorad
    Metzler, Ralf
    Gerhold, Stefan
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1307 - 1323