On dimension-free Sobolev imbeddings II

被引:0
|
作者
Miroslav Krbec
Hans-Jürgen Schmeisser
机构
[1] Academy of Sciences of the Czech Republic,Institute of Mathematics
[2] Friedrich-Schiller-Universität,Mathematisches Institut, Fakultät für Mathematik und Informatik
来源
关键词
Sobolev space; Imbedding theorem; Uncertainty principle; Best constants for imbeddings; 46E35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove dimension-invariant imbedding theorems for Sobolev spaces using extrapolation means.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 50 条
  • [11] Dimension-Free Empirical Entropy Estimation
    Cohen, Doron
    Kontorovich, Aryeh
    Koolyk, Aaron
    Wolfer, Geoffrey
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [12] DIMENSION-FREE UNIFORMITY WITH APPLICATIONS, I
    Beck, Jozsef
    [J]. MATHEMATIKA, 2017, 63 (03) : 734 - 761
  • [13] Dimension-Free Harnack Inequalities on Spaces
    Li, Huaiqian
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (04) : 1280 - 1297
  • [14] Dimension-free Harnack inequality and its applications
    Wang F.-Y.
    [J]. Frontiers of Mathematics in China, 2006, 1 (1) : 53 - 72
  • [15] The dimension-free structure of nonhomogeneous random matrices
    Latala, Rafal
    van Handel, Ramon
    Youssef, Pierre
    [J]. INVENTIONES MATHEMATICAE, 2018, 214 (03) : 1031 - 1080
  • [16] The dimension-free estimate for the truncated maximal operator
    Nie, Xudong
    Wang, Panwang
    [J]. OPEN MATHEMATICS, 2022, 20 (01): : 1548 - 1553
  • [17] Robust dimension-free Gram operator estimates
    Giulini, Ilaria
    [J]. BERNOULLI, 2018, 24 (4B) : 3864 - 3923
  • [18] Hyperplanes and Motions of Dimension-Free Hyperbolic Geometry
    Walter Benz
    [J]. Results in Mathematics, 2009, 55 : 11 - 22
  • [19] Optimal Sobolev imbeddings
    Kerman, Ron
    Pick, Lubos
    [J]. FORUM MATHEMATICUM, 2006, 18 (04) : 535 - 570
  • [20] Dimension-free Wasserstein contraction of nonlinear filters
    Whiteley, Nick
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 135 : 31 - 50