Let Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M^n$$\end{document} be a complete submanifold in the hyperbolic space Hn+m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {H}^{n+m}$$\end{document}. We show the vanishing of the Betti numbers βp(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta _p(M)$$\end{document}, 1≤p≤n-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1 \le p \le n-1$$\end{document}, if M is compact and the squared norm of the mean curvature satisfies some pinching condition. In the noncompact case, we prove various vanishing theorems of Lq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^q$$\end{document} harmonic p-forms on Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M^n$$\end{document} if the mean curvature is bounded from above or below, and the total curvature is less than an explicit constant or some stability type inequality holds on Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M^n$$\end{document}. Finally, by putting some restrictions on the bottom of the spectrum of the Laplace operator, we can also get some vanishing theorems. On the other hand, based on the nonexistence of nontrivial L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2$$\end{document} harmonic 1-forms on Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M^n$$\end{document}, we can further show some one-end theorems under various hypotheses.
机构:
Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350117, Fujian, Peoples R ChinaFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350117, Fujian, Peoples R China
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Nanchang Univ, Dept Math, Nanchang 330047, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Fu, Haiping
Xu, Hongwei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China