Topological Complexity of Motion Planning

被引:0
|
作者
机构
[1] School of Mathematical Sciences,
[2] Tel Aviv University,undefined
[3] Ramat Aviv 69978,undefined
[4] Israel mfarber@tau.ac.il,undefined
来源
关键词
Open Subset; Planning Problem; Motion Planning; Configuration Space; Algebraic Topology;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. In this paper we study a notion of topological complexity TC(X) for the motion planning problem. TC(X) is a number which measures discontinuity of the process of motion planning in the configuration space X . More precisely, TC(X) is the minimal number k such that there are k different "motion planning rules," each defined on an open subset of X× X , so that each rule is continuous in the source and target configurations. We use methods of algebraic topology (the Lusternik—Schnirelman theory) to study the topological complexity TC(X) . We give an upper bound for TC(X) (in terms of the dimension of the configuration space X ) and also a lower bound (in terms of the structure of the cohomology algebra of X ). We explicitly compute the topological complexity of motion planning for a number of configuration spaces: spheres, two-dimensional surfaces, products of spheres. In particular, we completely calculate the topological complexity of the problem of motion planning for a robot arm in the absence of obstacles.
引用
下载
收藏
页码:211 / 221
页数:10
相关论文
共 50 条