Poly(o-methoxyaniline) Modified by the Biphasic Ceramic System Na2Ti3O7/ Na2Ti6O13

被引:0
|
作者
J. P. da Silva
S. Costa
F. X. Nobre
E. A. Sanches
M. M. da S. Paula
L. Aguilera
M. S. Torikachvili
Y. Leyet
机构
[1] Universidade Federal do Amazonas,LPMaT, Departamento de Engenharia de Materiais
[2] Universidade Federal do Amazonas,Departamento de Física
[3] Alimentos e Meio Ambiente - DQA,Departamento de Química
[4] Instituto Federal de Educação,Department of Physics
[5] Ciência e Tecnologia do Amazonas,undefined
[6] Instituto de Desenvolvimento Tecnológico,undefined
[7] San Diego State University,undefined
关键词
Polymer/Ceramic composites; Electrical properties; POMA; Sodium titanate;
D O I
暂无
中图分类号
学科分类号
摘要
We probed the structural modifications and electronic behavior of composites obtained from the admixture of a biphasic titanate ceramic system (Na2Ti3O7/Na2Ti6O13) with a poly(o-methoxyaniline, POMA) matrix. The composites were obtained by the addition of Na2Ti3O7/Na2Ti6O13to a POMA matrix in mass concentrations from 0 to 35%. The sodium titanates were synthesized by means of sonochemistry, while the polymer was obtained by conventional chemical polymerization. The structural analysis carried by XRD, FTIR and UV-Vis indicated mostly the presence of POMA, though the titanates could be identified in the composites with higher concentration. The XRD diffractograms showed narrow reflections that could be correlated to the Na2Ti6O13 phase and hydrogen titanates, whose presence indicates a process of partial substitution of H+ for Na+ ions. While the thermal degradation of the polymeric chains starts near 150 °C, the thermogravimetric and differential thermogravimetric (TG/dTG) analysis revealed that the presence of sodium titanates enhances the thermal stability of the composites. Finally, the addition of the biphasic ceramic to the composite increases the electrical resistivity drastically, from ≈ 102 Ω cm in the pure POMA to ≈ 104 Ω cm in the 35% composite.
引用
收藏
页码:1381 / 1387
页数:6
相关论文
共 50 条
  • [41] Synthesis and electrical properties of Na2Ti3O7 nanoribbons
    Li, Shanying
    Liu, Lihua
    Tian, Damin
    Zhao, Haipeng
    MICRO & NANO LETTERS, 2011, 6 (04): : 233 - 235
  • [42] Synthesis and synergistic flocculation of Na2Ti3O7 nanoribbons
    Li, Shanying
    Chen, Xiang
    Tian, Damin
    Zhao, Haipeng
    MATERIALS RESEARCH BULLETIN, 2012, 47 (11) : 3770 - 3773
  • [43] Preparation and formation mechanism of linear Na2Ti3O7
    He H.
    Wang J.
    Yang Y.
    Wang J.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2016, 44 (01): : 117 - 124
  • [44] Synthesis, conversion, and comparison of the photocatalytic and electrochemical properties of Na2Ti6O13 and Li2Ti6O13 nanobelts
    Zhang, X. K.
    Yuan, J. J.
    Yu, H. J.
    Zhu, X. R.
    Yin, Z.
    Shen, H.
    Xie, Y. M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 631 : 171 - 177
  • [45] IONIC CONDUCTIVITIES OF NA2TI3O7, K2TI4O9 AND THEIR RELATED MATERIALS
    KIKKAWA, S
    YASUDA, F
    KOIZUMI, M
    MATERIALS RESEARCH BULLETIN, 1985, 20 (10) : 1221 - 1227
  • [46] Mechanochemical-molten salt synthesis of Na2Ti6O13 nanobelts
    Billik, Peter
    Caplovicova, Maria
    Caplovic, L'ubomir
    MATERIALS RESEARCH BULLETIN, 2010, 45 (05) : 621 - 627
  • [47] Lithium- and sodium-ion transport properties of Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13
    Zulueta, Yohandys A.
    Geerlings, Paul
    Tielens, Frederik
    Minh Tho Nguyen
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 279
  • [48] Synthesis and field effect characteristics of Na2Ti3O7 nanowires
    Wang, Lijie
    Zhang, Tong
    Qi, Qi
    Hu, Jiahuan
    Zeng, Yi
    Lu, Geyu
    MATERIALS LETTERS, 2009, 63 (11) : 903 - 904
  • [49] Synthesis and ionic conduction of sodium titanate Na2Ti3O7
    I. A. Stenina
    L. D. Kozina
    T. L. Kulova
    A. M. Skundin
    A. A. Chekannikov
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2016, 61 : 1235 - 1240
  • [50] Synthesis and ionic conduction of sodium titanate Na2Ti3O7
    Stenina, I. A.
    Kozina, L. D.
    Kulova, T. L.
    Skundin, A. M.
    Chekannikov, A. A.
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2016, 61 (10) : 1235 - 1240