Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation

被引:0
|
作者
Fouad Hadj Selem
Hichem Hajaiej
Peter A. Markowich
Saber Trabelsi
机构
[1] French Atomic Energy Commission,Department of Mathematics, College of Science
[2] Neurospin,Division of Mathematics & Computer Science & Engineering
[3] King Saud University,undefined
[4] King Abdullah University of Science and Technology,undefined
来源
关键词
35J60; 37J10; 35Q55; 35P30; Constrained minimization problem; nonlinear Schrödinger equation; eigenvalue problem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the mathematical analysis of a masssubcritical nonlinear Schrödinger equation arising from fiber optic applications. We show the existence and symmetry of minimizers of the associated constrained variational problem. We also prove the orbital stability of such solutions referred to as standing waves and characterize the associated orbit. In the last section, we illustrate our results with few numerical simulations.
引用
收藏
页码:273 / 295
页数:22
相关论文
共 50 条
  • [1] Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation
    Selem, Fouad Hadj
    Hajaiej, Hichem
    Markowich, Peter A.
    Trabelsi, Saber
    MILAN JOURNAL OF MATHEMATICS, 2014, 82 (02) : 273 - 295
  • [2] Gross-Pitaevskii equation: Variational approach
    Perez, JCD
    Trallero-Giner, C
    Richard, VL
    Trallero-Herrero, C
    Birman, JL
    PHYSICA STATUS SOLIDI C - CONFERENCE AND CRITICAL REVIEWS, VOL 2, NO 10, 2005, 2 (10): : 3665 - 3668
  • [3] Instability of standing waves for the inhomogeneous Gross-Pitaevskii equation
    Wang, Yongbin
    Feng, Binhua
    AIMS MATHEMATICS, 2020, 5 (05): : 4596 - 4612
  • [4] Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement
    Liu, Jiayin
    He, Zhiqian
    Feng, Binhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [5] Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation
    Gerard, Patrick
    Zhang, Zhifei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (02): : 178 - 210
  • [6] Orbital Stability of the Black Soliton for the Gross-Pitaevskii Equation
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    Smets, Didier
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) : 2611 - 2642
  • [7] On the Orbital Stability of Gross-Pitaevskii Solitons
    Duan, Xiuqing
    Wang, Xiangrong
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2025, 32 (01)
  • [8] Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation
    Chen, H. -S.
    Chang, S. -L.
    Jeng, B. -W.
    Chien, C. -S.
    NUMERICAL ALGORITHMS, 2018, 77 (03) : 709 - 726
  • [9] Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation
    H.-S. Chen
    S.-L. Chang
    B.-W. Jeng
    C.-S. Chien
    Numerical Algorithms, 2018, 77 : 709 - 726
  • [10] Stability of the solutions of the Gross-Pitaevskii equation
    Jackson, AD
    Kavoulakis, GM
    Lundh, E
    PHYSICAL REVIEW A, 2005, 72 (05):