Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement

被引:6
|
作者
Liu, Jiayin [1 ]
He, Zhiqian [2 ]
Feng, Binhua [3 ]
机构
[1] North Minzu Univ, Sch Math & Informat Sci, Yinchuan 750021, Ningxia, Peoples R China
[2] Qinghai Univ, Dept Basic Teaching & Res, Xining 810016, Peoples R China
[3] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Inhomogeneous Gross-Pitaevskii equation; Partial confinement; Orbital stability of standing waves; NONLINEAR SCHRODINGER-EQUATIONS; GLOBAL EXISTENCE; CHOQUARD EQUATION; SHARP THRESHOLD; BLOW-UP; NLS;
D O I
10.1016/j.jmaa.2021.125604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of stable standing waves for the in homogeneous Gross-Pitaevskii equation with a partial confinement. In both the L-2-sub critical and L-2-supercritical cases, we obtain the existence and stability of standing waves. Our results are complements to the results of Ardila and Dinh (2020) [2] and Luo (2019) [27], where the existence and stability of standing waves have been studied for the inhomogeneous Gross-Pitaevskii equation with the complete confinement. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Instability of standing waves for the inhomogeneous Gross-Pitaevskii equation
    Wang, Yongbin
    Feng, Binhua
    AIMS MATHEMATICS, 2020, 5 (05): : 4596 - 4612
  • [2] Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation
    Fouad Hadj Selem
    Hichem Hajaiej
    Peter A. Markowich
    Saber Trabelsi
    Milan Journal of Mathematics, 2014, 82 : 273 - 295
  • [3] Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation
    Selem, Fouad Hadj
    Hajaiej, Hichem
    Markowich, Peter A.
    Trabelsi, Saber
    MILAN JOURNAL OF MATHEMATICS, 2014, 82 (02) : 273 - 295
  • [4] Existence and properties of travelling waves for the Gross-Pitaevskii equation
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 55 - +
  • [5] Existence and nonexistence of traveling waves for the Gross-Pitaevskii equation in tori
    Martinez Sanchez, Francisco Javier
    Ruiz, David
    MATHEMATICS IN ENGINEERING, 2023, 5 (01):
  • [6] Existence and decay of traveling waves for the nonlocal Gross-Pitaevskii equation
    de Laire, Andre
    Lopez-Martinez, Salvador
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (09) : 1732 - 1794
  • [7] EXISTENCE AND STABILITY OF STANDING WAVES FOR THE CHOQUARD EQUATION WITH PARTIAL CONFINEMENT
    Xiao, Lu
    Geng, Qiuping
    Wang, Jun
    Zhu, Maochun
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (02) : 451 - 474
  • [8] Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation
    Chen, H. -S.
    Chang, S. -L.
    Jeng, B. -W.
    Chien, C. -S.
    NUMERICAL ALGORITHMS, 2018, 77 (03) : 709 - 726
  • [9] Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation
    H.-S. Chen
    S.-L. Chang
    B.-W. Jeng
    C.-S. Chien
    Numerical Algorithms, 2018, 77 : 709 - 726
  • [10] Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation
    Feng, Binhua
    Cao, Leijin
    Liu, Jiayin
    APPLIED MATHEMATICS LETTERS, 2021, 115