Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Niño and La Niña

被引:0
|
作者
Xiaomeng Song
Renhe Zhang
Xinyao Rong
机构
[1] Chinese Academy of Meteorological Sciences,State Key Laboratory of Severe Weather
[2] Fudan University,Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences
来源
关键词
ENSO; asymmetry; ENSO decay; intraseasonal oscillation; OGCM; ENSO; 非对称; ENSO衰减; 季节内振荡; OGCM;
D O I
暂无
中图分类号
学科分类号
摘要
Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Niño and La Niña mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Niño (La Niña) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Niño (La Niña) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Niño and La Niña decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Niño and La Niña decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating different equatorial Kelvin waves. The largest negative anomaly over the Niño3 region caused by the zonal wind stress anomalies during El Niño can be threefold greater than the positive Niño3 SSTA anomalies during La Niña, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Niño.
引用
收藏
页码:779 / 792
页数:13
相关论文
共 50 条
  • [31] The Tropical Atlantic's Asymmetric Impact on the El Niño-Southern Oscillation
    van Rensch, Peter
    McGregor, Shayne
    Dommenget, Dietmar
    Bi, Daohua
    Liguori, Giovanni
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (04)
  • [32] Forecasting El Niño/La Niña and Their Types Using Neural Networks
    A. S. Lubkov
    E. N. Voskresenskaya
    O. V. Marchukova
    [J]. Russian Meteorology and Hydrology, 2020, 45 : 806 - 813
  • [33] Change of El Niño and La Niña amplitude asymmetry around 1980
    Xiao Pan
    Tim Li
    Mingcheng Chen
    [J]. Climate Dynamics, 2020, 54 : 1351 - 1366
  • [34] A data analysis study on the evolution of the El Niño/ La Niña cycle
    Chao Jiping
    Yuan Shaoyu
    Chao Qingchen
    Tian Jiwei
    [J]. Advances in Atmospheric Sciences, 2002, 19 (5) : 837 - 844
  • [35] El Niño- or La Niña-like climate change?
    Matthew Collins
    [J]. Climate Dynamics, 2005, 24 : 89 - 104
  • [36] Climatic anomalies in Eurasia from El Niño/La Niña effects
    I. I. Mokhov
    A. V. Timazhev
    [J]. Doklady Earth Sciences, 2013, 453 : 1141 - 1144
  • [37] El Niño influence on streamflow forecasting
    Kelman J.
    Vieira A.D.M.
    Rodriguez-Amaya J.E.
    [J]. Stochastic Environmental Research and Risk Assessment, 2000, 14 (2) : 123 - 138
  • [38] The influence of El Niño–Southern Oscillation on boreal winter rainfall over Peninsular Malaysia
    Sandra Richard
    Kevin J. E. Walsh
    [J]. Theoretical and Applied Climatology, 2018, 134 : 121 - 138
  • [39] Statistical relationships between the Interdecadal Pacific Oscillation and El Niño–Southern Oscillation
    Hanna Heidemann
    Tim Cowan
    Scott B. Power
    Benjamin J. Henley
    [J]. Climate Dynamics, 2024, 62 : 2499 - 2515
  • [40] Manifestation of the Arctic Oscillation and El Niño-Southern Oscillation in the tropical stratosphere
    V. A. Bezverkhny
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2007, 43 : 317 - 322