Thermodynamic Formalism for Random Non-uniformly Expanding Maps

被引:0
|
作者
Manuel Stadlbauer
Shintaro Suzuki
Paulo Varandas
机构
[1] Universidade Federal do Rio de Janeiro,Departamento de Matemática
[2] Keio University,Keio Institute of Pure and Applied Sciences (KiPAS)
[3] Universidade Federal da Bahia,Departamento de Matemática
[4] Centro de Matemática da Universidade do Porto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop a quenched thermodynamic formalism for a wide class of random maps with non-uniform expansion, where no Markov structure, no uniformly bounded degree or the existence of some expanding dynamics is required. We prove that every measurable and fibered C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-potential at high temperature admits a unique equilibrium state which satisfies a weak Gibbs property, and has exponential decay of correlations. The arguments combine a functional analytic approach for the decay of correlations (using Birkhoff cone methods) and Carathéodory-type structures to describe the relative pressure of not necessary compact invariant sets in random dynamical systems. We establish also a variational principle for the relative pressure of random dynamical systems.
引用
收藏
页码:369 / 427
页数:58
相关论文
共 50 条
  • [1] Thermodynamic Formalism for Random Non-uniformly Expanding Maps
    Stadlbauer, Manuel
    Suzuki, Shintaro
    Varandas, Paulo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (01) : 369 - 427
  • [2] Adapted random perturbations for non-uniformly expanding maps
    Araujo, Vitor
    Pacifico, Maria Jose
    Pinheiro, Mariana
    STOCHASTICS AND DYNAMICS, 2014, 14 (04)
  • [3] Equilibrium states for random non-uniformly expanding maps
    Arbieto, A
    Matheus, C
    Oliveira, K
    NONLINEARITY, 2004, 17 (02) : 581 - 593
  • [4] Absolutely continuous invariant measures for random non-uniformly expanding maps
    Vitor Araujo
    Javier Solano
    Mathematische Zeitschrift, 2014, 277 : 1199 - 1235
  • [5] Uniqueness and stability of equilibrium states for random non-uniformly expanding maps
    Bilbao, R.
    Ramos, V
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (08) : 2589 - 2623
  • [6] Absolutely continuous invariant measures for random non-uniformly expanding maps
    Araujo, Vitor
    Solano, Javier
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 1199 - 1235
  • [7] On the continuity of entropy for non-uniformly expanding maps
    Alves, JF
    Oliveira, K
    Tahzibi, A
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 409 - 414
  • [8] Equilibrium states for non-uniformly expanding maps
    Oliveira, K
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1891 - 1905
  • [9] Large Deviations for Non-Uniformly Expanding Maps
    V. Araújo
    M. J. Pacifico
    Journal of Statistical Physics, 2006, 125 : 411 - 453
  • [10] Large deviations for non-uniformly expanding maps
    Araujo, V.
    Pacifico, M. J.
    JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (02) : 415 - 457