Formal Expansions in Stochastic Model for Wave Turbulence 1: Kinetic Limit

被引:0
|
作者
Andrey Dymov
Sergei Kuksin
机构
[1] Steklov Mathematical Institute of RAS,UFR de Mathématiques
[2] National Research University Higher School of Economics, Batiment Sophie Germain
[3] Université Paris-Diderot (Paris 7),School of Mathematics
[4] Shandong University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the damped/driven (modified) cubic NLS equation on a large torus with a properly scaled forcing and dissipation, and decompose its solutions to formal series in the amplitude. We study the second order truncation of this series and prove that when the amplitude goes to zero and the torus’ size goes to infinity the energy spectrum of the truncated solutions becomes close to a solution of the damped/driven wave kinetic equation. Next we discuss higher order truncations of the series.
引用
收藏
页码:951 / 1014
页数:63
相关论文
共 50 条
  • [31] Wave-optics limit of the stochastic gravitational wave background
    Garoffolo, Alice
    PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [32] A STOCHASTIC-MODEL OF GRAVITY-WAVE INDUCED CLEAR-AIR TURBULENCE
    FAIRALL, CW
    WHITE, AB
    THOMSON, DW
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1991, 48 (15) : 1771 - 1790
  • [33] Asymptotic expansions for a stochastic model of queue storage
    Knessl, C
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (02): : 592 - 615
  • [34] Kinetic Limit for Wave Propagation in a Random Medium
    Jani Lukkarinen
    Herbert Spohn
    Archive for Rational Mechanics and Analysis, 2007, 183 : 93 - 162
  • [35] Kinetic limit for wave propagation in a random medium
    Lukkarinen, Jani
    Spohn, Herbert
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (01) : 93 - 162
  • [36] A STOCHASTIC SUBGRID MODEL FOR SHEARED TURBULENCE
    BERTOGLIO, JP
    LECTURE NOTES IN PHYSICS, 1985, 230 : 100 - 119
  • [37] A TURBULENCE MODEL WITH STOCHASTIC SOLITON MOTION
    QIAN, S
    CHEN, HH
    LEE, YC
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) : 506 - 516
  • [38] Model of laminated wave turbulence
    E. Kartashova
    Journal of Experimental and Theoretical Physics Letters, 2006, 83 : 283 - 287
  • [39] Control of the stochastic Burgers model of turbulence
    Da Prato, G
    Debussche, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) : 1123 - 1149
  • [40] STOCHASTIC 1D BURGERS EQUATION AS A MODEL FORHYDRODYNAMICAL TURBULENCE
    Kuksin, Sergei
    MOSCOW MATHEMATICAL JOURNAL, 2024, 24 (04) : 603 - 640