Experimental demonstration of continuous quantum error correction

被引:0
|
作者
William P. Livingston
Machiel S. Blok
Emmanuel Flurin
Justin Dressel
Andrew N. Jordan
Irfan Siddiqi
机构
[1] University of California,Department of Physics
[2] University of California,Center for Quantum Coherent Science
[3] University of Rochester,Department of Physics and Astronomy
[4] CEA,Université Paris
[5] CNRS,Saclay
[6] SPEC,Institute for Quantum Studies
[7] Chapman University,Schmid College of Science and Technology
[8] Chapman University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The storage and processing of quantum information are susceptible to external noise, resulting in computational errors. A powerful method to suppress these effects is quantum error correction. Typically, quantum error correction is executed in discrete rounds, using entangling gates and projective measurement on ancillary qubits to complete each round of error correction. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancillary qubits, and their associated errors. An FPGA controller actively corrects errors as they are detected, achieving an average bit-flip detection efficiency of up to 91%. Furthermore, the protocol increases the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.
引用
收藏
相关论文
共 50 条
  • [21] Experimental Concatenation of Quantum Error Correction with Decoupling
    Boulant, N.
    Pravia, M. A.
    Fortunato, E. M.
    Havel, T. F.
    Cory, D. G.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 135 - 144
  • [22] Experimental Concatenation of Quantum Error Correction with Decoupling
    N. Boulant
    M. A. Pravia
    E. M. Fortunato
    T. F. Havel
    D. G. Cory
    Quantum Information Processing, 2002, 1 : 135 - 144
  • [23] Experimental quantum error correction with high fidelity
    Zhang, Jingfu
    Gangloff, Dorian
    Moussa, Osama
    Laflamme, Raymond
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [24] Calibrated Decoders for Experimental Quantum Error Correction
    Chen, Edward H.
    Yoder, Theodore J.
    Kim, Youngseok
    Sundaresan, Neereja
    Srinivasan, Srikanth
    Li, Muyuan
    Corcoles, Antonio D.
    Cross, Andrew W.
    Takita, Maika
    PHYSICAL REVIEW LETTERS, 2022, 128 (11)
  • [25] Continuous quantum error correction as classical hybrid control
    Mabuchi, Hideo
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [26] Continuous quantum error correction through local operations
    Mascarenhas, Eduardo
    Marques, Breno
    Cunha, Marcelo Terra
    Santos, Marcelo Franca
    PHYSICAL REVIEW A, 2010, 82 (03)
  • [27] Results on continuous quantum error correction via quantum feedback control
    Ahn, C
    Doherty, AC
    Landahl, AJ
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 345 - 348
  • [28] Practical Demonstration of Quantum Key Distribution Protocol with Error Correction Mechanism
    Swathi Mummadi
    Bhawana Rudra
    International Journal of Theoretical Physics, 62
  • [29] Practical Demonstration of Quantum Key Distribution Protocol with Error Correction Mechanism
    Mummadi, Swathi
    Rudra, Bhawana
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (04)
  • [30] Optimal experimental demonstration of error-tolerant quantum witnesses
    Wang, Kunkun
    Knee, George C.
    Zhan, Xiang
    Bian, Zhihao
    Li, Jian
    Xue, Peng
    PHYSICAL REVIEW A, 2017, 95 (03)