Experimental demonstration of continuous quantum error correction

被引:0
|
作者
William P. Livingston
Machiel S. Blok
Emmanuel Flurin
Justin Dressel
Andrew N. Jordan
Irfan Siddiqi
机构
[1] University of California,Department of Physics
[2] University of California,Center for Quantum Coherent Science
[3] University of Rochester,Department of Physics and Astronomy
[4] CEA,Université Paris
[5] CNRS,Saclay
[6] SPEC,Institute for Quantum Studies
[7] Chapman University,Schmid College of Science and Technology
[8] Chapman University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The storage and processing of quantum information are susceptible to external noise, resulting in computational errors. A powerful method to suppress these effects is quantum error correction. Typically, quantum error correction is executed in discrete rounds, using entangling gates and projective measurement on ancillary qubits to complete each round of error correction. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancillary qubits, and their associated errors. An FPGA controller actively corrects errors as they are detected, achieving an average bit-flip detection efficiency of up to 91%. Furthermore, the protocol increases the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.
引用
收藏
相关论文
共 50 条
  • [1] Experimental demonstration of continuous quantum error correction
    Livingston, William P.
    Blok, Machiel S.
    Flurin, Emmanuel
    Dressel, Justin
    Jordan, Andrew N.
    Siddiqi, Irfan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Experimental demonstration of a graph state quantum error-correction code
    Bell, B. A.
    Herrera-Marti, D. A.
    Tame, M. S.
    Markham, D.
    Wadsworth, W. J.
    Rarity, J. G.
    NATURE COMMUNICATIONS, 2014, 5
  • [3] Experimental demonstration of a graph state quantum error-correction code
    B. A. Bell
    D. A. Herrera-Martí
    M. S. Tame
    D. Markham
    W. J. Wadsworth
    J. G. Rarity
    Nature Communications, 5
  • [4] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 158 - 166
  • [5] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 121 - 126
  • [6] Experimental demonstration of topological error correction
    Xing-Can Yao
    Tian-Xiong Wang
    Hao-Ze Chen
    Wei-Bo Gao
    Austin G. Fowler
    Robert Raussendorf
    Zeng-Bing Chen
    Nai-Le Liu
    Chao-Yang Lu
    You-Jin Deng
    Yu-Ao Chen
    Jian-Wei Pan
    Nature, 2012, 482 : 489 - 494
  • [7] Experimental demonstration of topological error correction
    Yao, Xing-Can
    Wang, Tian-Xiong
    Chen, Hao-Ze
    Gao, Wei-Bo
    Fowler, Austin G.
    Raussendorf, Robert
    Chen, Zeng-Bing
    Liu, Nai-Le
    Lu, Chao-Yang
    Deng, You-Jin
    Chen, Yu-Ao
    Pan, Jian-Wei
    NATURE, 2012, 482 (7386) : 489 - 494
  • [8] Experimental quantum error correction
    Cory, DG
    Price, MD
    Maas, W
    Knill, E
    Laflamme, R
    Zurek, WH
    Havel, TF
    Somaroo, SS
    PHYSICAL REVIEW LETTERS, 1998, 81 (10) : 2152 - 2155
  • [9] Error correction for continuous quantum variables
    Braunstein, SL
    PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4084 - 4087
  • [10] Continuous quantum error correction by cooling
    Sarovar, M
    Milburn, GJ
    PHYSICAL REVIEW A, 2005, 72 (01)