Enhanced cross-domain sentiment classification utilizing a multi-source transfer learning approach

被引:1
|
作者
Farhan Hassan Khan
Usman Qamar
Saba Bashir
机构
[1] National University of Sciences and Technology (NUST),Knowledge and Data Science Research Center (KDRC), Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering
[2] Federal Urdu University of Arts,Department of Computer Science
[3] Science and Technology (FUUAST),undefined
来源
Soft Computing | 2019年 / 23卷
关键词
Cross-domain; Sentiment analysis; Classification; Transfer learning; Support vector machine; SentiWordNet;
D O I
暂无
中图分类号
学科分类号
摘要
Online social networks have become extremely popular with the ever-increasing reachability of internet to the common person. There are millions of tweets, Facebook messages, and product reviews posted every day. Such huge amount of data presents an opportunity to analyze the sentiment of masses in order to facilitate the decision making for the betterment of society. Sentiment analysis is the research area that quantitates the opinions expressed in natural language. It is a combination of various research fields such as text mining, natural language processing, artificial intelligence, statistics. The application of supervised machine learning algorithms is limited due to the unavailability of labeled data whereas the unsupervised or lexicon-based methodologies show weak performance. This scenario sets the stage for transfer learning or cross-domain learning approaches where the knowledge is learned from the source domain which is then applied to the target domain. The proposed approach computes the feature weights by the application of cosine similarity measure to SentiWordNet and generates revised sentiment scores. Model learning is performed by support vector machine using two experimental settings, i.e., single source and multiple target domains and multiple source and single target domains (MSST). Nine benchmark datasets have been employed for performance evaluation. Best performance was obtained using the MSST settings with 85.05% accuracy, 85.01% precision, 85.10% recall, and 85.05% F-measure. State-of-the-art performance comparison proved that the cosine similarity-based transfer learning approach outperforms other approaches.
引用
收藏
页码:5431 / 5442
页数:11
相关论文
共 50 条
  • [21] Hierarchical Attention Transfer Network for Cross-Domain Sentiment Classification
    Li, Zheng
    Wei, Ying
    Zhang, Yu
    Yang, Qiang
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5852 - 5859
  • [22] Wasserstein based transfer network for cross-domain sentiment classification
    Du, Yongping
    He, Meng
    Wang, Lulin
    Zhang, Haitong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 204
  • [23] Interactive Attention Transfer Network for Cross-Domain Sentiment Classification
    Zhang, Kai
    Zhang, Hefu
    Liu, Qi
    Zhao, Hongke
    Zhu, Hengshu
    Chen, Enhong
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5773 - 5780
  • [24] Cross-domain sentiment classification via topical correspondence transfer
    Zhou, Guangyou
    Zhou, Yin
    Guo, Xiyue
    Tu, Xinhui
    He, Tingting
    [J]. NEUROCOMPUTING, 2015, 159 : 298 - 305
  • [25] Graph Adaptive Semantic Transfer for Cross-domain Sentiment Classification
    Zhang, Kai
    Liu, Qi
    Huang, Zhenya
    Cheng, Mingyue
    Zhang, Kun
    Zhang, Mengdi
    Wu, Wei
    Chen, Enhong
    [J]. PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1566 - 1576
  • [26] Deep transfer learning mechanism for fine-grained cross-domain sentiment classification
    Cao, Zixuan
    Zhou, Yongmei
    Yang, Aimin
    Peng, Sancheng
    [J]. CONNECTION SCIENCE, 2021, 33 (04) : 911 - 928
  • [27] Simultaneous Learning of Pivots and Representations for Cross-Domain Sentiment Classification
    Li, Liang
    Ye, Weirui
    Long, Mingsheng
    Tang, Yateng
    Xu, Jin
    Wang, Jianmin
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 8220 - 8227
  • [28] Cross-Domain Sentiment Classification via Deep Reinforcement Learning
    Dou, Lintao
    Huang, Jian
    [J]. 2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 337 - 341
  • [29] Cross-domain sentiment classification based on syntactic structure transfer and domain fusion
    Zhao C.
    Wu M.
    Shen L.
    Shangguan X.
    Wang Y.
    Li J.
    Wang S.
    Li D.
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2023, 63 (09): : 1380 - 1389
  • [30] Softly Associative Transfer Learning for Cross-Domain Classification
    Wang, Deqing
    Lu, Chenwei
    Wu, Junjie
    Liu, Hongfu
    Zhang, Wenjie
    Zhuang, Fuzhen
    Zhang, Hui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (11) : 4709 - 4721