CR Embeddings and Kähler Manifolds with Pseudo-Conformally Flat Curvature Tensors

被引:0
|
作者
Xiaojun Huang
Shanyu Ji
Brandon Lee
机构
[1] Rutgers University,Department of Mathematics
[2] University of Houston,Department of Mathematics
来源
关键词
CR embedding; Kähler manifold; Pseudo-conformally flat curvature tensor; 30V30; 30V20;
D O I
暂无
中图分类号
学科分类号
摘要
Under certain conditions on co-dimension and curvature tensors, the image of some CR or holomorphic maps are proved to be totally geodesic.
引用
收藏
页码:1912 / 1928
页数:16
相关论文
共 50 条
  • [41] On Kähler manifolds with harmonic Bochner curvature tensor
    Jaeman Kim
    Annals of Global Analysis and Geometry, 2009, 35 : 339 - 343
  • [42] Kähler manifolds and the curvature operator of the second kind
    Xiaolong Li
    Mathematische Zeitschrift, 2023, 303
  • [43] Kähler manifolds and cross quadratic bisectional curvature
    Ni, Lei
    Zheng, Fangyang
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (04) : 1715 - 1738
  • [44] On the Curvature of Kähler Manifolds with Zero Ricci Tensor
    V. N. Kokarev
    Mathematical Notes, 2019, 105 : 528 - 534
  • [45] Compact Kähler manifolds with nonpositive bisectional curvature
    Gang Liu
    Geometric and Functional Analysis, 2014, 24 : 1591 - 1607
  • [46] Locally conformally Kähler manifolds admitting a holomorphic conformal flow
    Liviu Ornea
    Misha Verbitsky
    Mathematische Zeitschrift, 2013, 273 : 605 - 611
  • [47] Balanced Metrics and Gauduchon Cone of Locally Conformally Kähler Manifolds
    Ornea, Liviu
    Verbitsky, Misha
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (03)
  • [48] Characterization of solitons in a pseudo-quasi-conformally flat and pseudo-W8 flat Lorentzian Ka<spacing diaeresis>hler space-time manifolds
    Chaturvedi, B. B.
    Kaushik, Kunj Bihari
    Bhagat, Prabhawati
    Khan, Mohammad Nazrul Islam
    AIMS MATHEMATICS, 2024, 9 (07): : 19515 - 19528
  • [49] Correction to: A note on Euler number of locally conformally Kähler manifolds
    Teng Huang
    Mathematische Zeitschrift, 2021, 299 : 2561 - 2561
  • [50] Non-linear Hopf Manifolds are Locally Conformally Kähler
    Liviu Ornea
    Misha Verbitsky
    The Journal of Geometric Analysis, 2023, 33