Algorithmic Complexity of a Problem of Idempotent Convex Geometry

被引:0
|
作者
S. N. Sergeev
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2003年 / 74卷
关键词
idempotent geometry; convex hull; semimodule; idempotent semiring; idempotent semifield; algorithmic complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Properties of the idempotently convex hull of a two-point set in a free semimodule over the idempotent semiring Rmax min and in a free semimodule over a linearly ordered idempotent semifield are studied. Construction algorithms for this hull are proposed.
引用
收藏
页码:848 / 852
页数:4
相关论文
共 50 条
  • [31] Algorithmic Relative Complexity
    Cerra, Daniele
    Datcu, Mihai
    ENTROPY, 2011, 13 (04) : 902 - 914
  • [32] On the separation of convex sets in some idempotent semimodules
    Briec, Walter
    Horvath, Charles
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (07) : 1542 - 1548
  • [33] Complexity of convex optimization using geometry-based measures and a reference point
    Freund, RM
    MATHEMATICAL PROGRAMMING, 2004, 99 (02) : 197 - 221
  • [34] Complexity of convex optimization using geometry-based measures and a reference point
    Robert M. Freund
    Mathematical Programming, 2004, 99 : 197 - 221
  • [35] Algorithmic Bureaucracy Managing Competence, Complexity, and Problem Solving in the Age of Artificial Intelligence
    Vogl, Thomas M.
    Seidelin, Cathrine
    Ganesh, Bharath
    Bright, Jonathan
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH (DGO2019): GOVERNANCE IN THE AGE OF ARTIFICIAL INTELLIGENCE, 2019, : 148 - 153
  • [36] An algorithmic approach to convex fair partitions of convex polygons
    Campillo, Mathilda
    Gonzalez-Lima, Maria D.
    Uribe, Bernardo
    METHODSX, 2024, 12
  • [37] THE IDEMPOTENT PROBLEM FOR AN INVERSE MONOID
    Gilbert, N. D.
    Heale, R. Noonan
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (07) : 1179 - 1194
  • [38] On a problem related to idempotent semiring
    Zhao, X.Z.
    Lanzhou Daxue Xuebao/Journal of Lanzhou University, 2001, 37 (01):
  • [39] Algorithmic Cross-Complexity and Relative Complexity
    Cerra, Daniele
    Datcu, Mihai
    DCC 2009: 2009 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 342 - 351
  • [40] A LOWER BOUND ON THE COMPLEXITY OF THE CONVEX-HULL PROBLEM FOR SIMPLE POLYHEDRA
    KLAPPER, A
    INFORMATION PROCESSING LETTERS, 1987, 25 (03) : 159 - 161