Algorithmic Complexity of a Problem of Idempotent Convex Geometry

被引:0
|
作者
S. N. Sergeev
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2003年 / 74卷
关键词
idempotent geometry; convex hull; semimodule; idempotent semiring; idempotent semifield; algorithmic complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Properties of the idempotently convex hull of a two-point set in a free semimodule over the idempotent semiring Rmax min and in a free semimodule over a linearly ordered idempotent semifield are studied. Construction algorithms for this hull are proposed.
引用
收藏
页码:848 / 852
页数:4
相关论文
共 50 条
  • [1] Algorithmic complexity of a problem of idempotent convex geometry
    Sergeev, SN
    MATHEMATICAL NOTES, 2003, 74 (5-6) : 848 - 852
  • [2] Cyclic projectors and separation theorems in idempotent convex geometry
    Gaubert S.
    Sergeev S.
    Journal of Mathematical Sciences, 2008, 155 (6) : 815 - 829
  • [3] Equivalence of Convex Problem Geometry and Computational Complexity in the Separation Oracle Model
    Freund, Robert M.
    Vera, Jorge R.
    MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (04) : 869 - 879
  • [4] The Algorithmic Complexity of the Paired Matching Problem
    Verhaegh, Ruben F. A.
    GRAPHS AND COMBINATORIAL OPTIMIZATION: FROM THEORY TO APPLICATIONS, CTW 2023, 2024, 13 : 1 - 13
  • [5] Recent Progress and Open Problems in Algorithmic Convex Geometry
    Vempala, Santosh S.
    IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2010), 2010, 8 : 42 - 64
  • [6] On the algorithmic complexity of a problem in cluster analysis
    Dolgushev A.V.
    Kel'manov A.V.
    Journal of Applied and Industrial Mathematics, 2011, 5 (2) : 191 - 194
  • [7] BOUNDARIES OF SOLUTIONS AND ALGORITHMIC COMPLEXITY OF THE SYSTEMS OF CONVEX DIOPHANTINE INEQUALITIES
    TARASOV, SP
    KHACHIIAN, LG
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (02): : 296 - 300
  • [8] Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization
    Zhang, Liang
    Yang, Junchi
    Karbasi, Amin
    He, Niao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] On Algorithmic Complexity of Biomolecular Sequence Assembly Problem
    Narzisi, Giuseppe
    Mishra, Bud
    Schatz, Michael C.
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY, 2014, 8542 : 183 - 195
  • [10] PROBLEM IN CONFORMAL GEOMETRY OF CONVEX SURFACES
    KOUTROUFIOTIS, D
    MICHIGAN MATHEMATICAL JOURNAL, 1975, 22 (01) : 5 - 13