Subconvexity for Rankin-Selberg L-Functions of Maass Forms

被引:0
|
作者
Jianya Liu
Yangbo Ye
机构
[1] Shandong University,Department of Mathematics
[2] The University of Iowa,Department of Mathematics
来源
关键词
Cusp Form; Critical Line; Laplace Eigenvalue; Unique Ergodicity; Maass Form;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove a subconvexity bound for Rankin–Selberg L-functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L(s,f \otimes g)$\end{document} associated with a Maass cusp form f and a fixed cusp form g in the aspect of the Laplace eigenvalue 1/4 + k2 of f, on the critical line Re s = 1/2. Using this subconvexity bound, we prove the equidistribution conjecture of Rudnick and Sarnak [RS] on quantum unique ergodicity for dihedral Maass forms, following the work of Sarnak [S2] and Watson [W]. Also proved here is that the generalized Lindelöf hypothesis for the central value of our L-function is true on average.
引用
收藏
页码:1296 / 1323
页数:27
相关论文
共 50 条
  • [21] Test vectors for Rankin-Selberg L-functions
    Booker, Andrew R.
    Krishnamurthy, M.
    Lee, Min
    JOURNAL OF NUMBER THEORY, 2020, 209 : 37 - 48
  • [22] Uniform bounds for Rankin-Selberg L-functions
    Jutila, Matti
    Motohashi, Yoichi
    Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory, 2006, 75 : 243 - 256
  • [23] On zeros of approximate functions of the Rankin-Selberg L-functions
    Suzuki, Masatoshi
    ACTA ARITHMETICA, 2009, 136 (01) : 19 - 45
  • [24] Determining cusp forms by central values of Rankin-Selberg L-functions
    Pi, Qinghua
    JOURNAL OF NUMBER THEORY, 2010, 130 (10) : 2283 - 2292
  • [25] Rankin-Selberg L-functions on the critical line
    V. Blomer
    manuscripta mathematica, 2005, 117 : 111 - 133
  • [26] Hybrid bounds for Rankin-Selberg L-functions
    Hou, Fei
    Zhang, Meng
    JOURNAL OF NUMBER THEORY, 2017, 175 : 21 - 41
  • [27] The universality of symmetric power L-functions and their Rankin-Selberg L-functions
    Li, Hongze
    Wu, Jie
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (02) : 371 - 392
  • [28] Large oscillations of the argument of Rankin-Selberg L-functions
    Xiao, Xuanxuan
    Yang, Qiyu
    RAMANUJAN JOURNAL, 2023, 61 (03): : 763 - 777
  • [29] SPECIAL VALUES OF ANTICYCLOTOMIC RANKIN-SELBERG L-FUNCTIONS
    Hsieh, Ming-Lun
    DOCUMENTA MATHEMATICA, 2014, 19 : 709 - 767
  • [30] On the nonvanishing of the central value of the Rankin-Selberg L-functions
    Ginzburg, D
    Jiang, DH
    Rallis, S
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (03) : 679 - 722