Convergence Towards the Vlasov–Poisson Equation from the N-Fermionic Schrödinger Equation

被引:0
|
作者
Li Chen
Jinyeop Lee
Matthew Liew
机构
[1] Universität Mannheim,Institut für Mathematik
[2] Korea Institute for Advanced Study,School of Mathematics
[3] Ludwig-Maximilians-Universität München,Mathematisches Institut
来源
Annales Henri Poincaré | 2022年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the quantum dynamics of N interacting fermions in the large N limit. The particles in the system interact with each other via repulsive interaction that is regularized Coulomb potential with a polynomial cutoff with respect to N. From the quantum system, we derive the Vlasov–Poisson system by simultaneously estimating the semiclassical and mean-field residues in terms of the Husimi measure.
引用
收藏
页码:555 / 593
页数:38
相关论文
共 50 条
  • [31] Lorentz transformations for the schrödinger equation
    Shtelen V.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 480 - 481
  • [32] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [33] On the Linear Forms of the Schrödinger Equation
    Y. Kasri
    A. Bérard
    Y. Grandati
    L. Chetouani
    International Journal of Theoretical Physics, 2012, 51 : 1370 - 1378
  • [34] A canonical dilation of the Schrödinger equation
    M. F. Brown
    Russian Journal of Mathematical Physics, 2014, 21 : 316 - 325
  • [35] Thermodynamic Gravity and the Schrödinger Equation
    Merab Gogberashvili
    International Journal of Theoretical Physics, 2011, 50 : 2391 - 2402
  • [36] Matlab package for the Schrödinger equation
    Damian Trif
    Journal of Mathematical Chemistry, 2008, 43 : 1163 - 1176
  • [37] Separability of Solutions to a Schr?dinger Equation
    王文华
    曹怀信
    郭志华
    余保民
    Communications in Theoretical Physics, 2014, 62 (08) : 205 - 209
  • [38] On Gravitational Effects in the Schrödinger Equation
    M. D. Pollock
    Foundations of Physics, 2014, 44 : 368 - 388
  • [39] Theory of bifurcations of the Schrödinger equation
    A. A. Boichuk
    A. A. Pokutnyi
    Differential Equations, 2017, 53 : 855 - 863
  • [40] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66