Convergence Towards the Vlasov–Poisson Equation from the N-Fermionic Schrödinger Equation

被引:0
|
作者
Li Chen
Jinyeop Lee
Matthew Liew
机构
[1] Universität Mannheim,Institut für Mathematik
[2] Korea Institute for Advanced Study,School of Mathematics
[3] Ludwig-Maximilians-Universität München,Mathematisches Institut
来源
Annales Henri Poincaré | 2022年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the quantum dynamics of N interacting fermions in the large N limit. The particles in the system interact with each other via repulsive interaction that is regularized Coulomb potential with a polynomial cutoff with respect to N. From the quantum system, we derive the Vlasov–Poisson system by simultaneously estimating the semiclassical and mean-field residues in terms of the Husimi measure.
引用
收藏
页码:555 / 593
页数:38
相关论文
共 50 条
  • [1] Convergence Towards the Vlasov-Poisson Equation from the N-Fermionic Schrodinger Equation
    Chen, Li
    Lee, Jinyeop
    Liew, Matthew
    ANNALES HENRI POINCARE, 2022, 23 (02): : 555 - 593
  • [2] Towards a fermionic Vlasov equation
    Reinhard, PG
    Suraud, E
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1996, 355 (04): : 339 - 340
  • [3] Problems on Pointwise Convergence of Solutions to the Schrödinger Equation
    Chu-Hee Cho
    Sanghyuk Lee
    Ana Vargas
    Journal of Fourier Analysis and Applications, 2012, 18 : 972 - 994
  • [4] Convergence problem of Schr?dinger equation and wave equation in low regularity spaces
    Zhang, Yating
    Yan, Wei
    Yan, Xiangqian
    Zhao, Yajuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)
  • [5] Parallel Solution of the Schrödinger-Poisson Equation on GPUs
    Cervenka, Johann
    Kosik, Robert
    Ribeiro, Felipe
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2024, 13952 LNCS : 375 - 382
  • [6] Bifurcation and regularity analysis of the Schrödinger-Poisson equation
    Pucci, Patrizia
    Wang, Linlin
    Zhang, Binlin
    NONLINEARITY, 2024, 37 (03)
  • [7] Groundstates of the Schrödinger–Poisson–Slater equation with critical growth
    Chunyu Lei
    Vicenţiu D. Rădulescu
    Binlin Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [8] Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation
    Renato Lucà
    Keith M. Rogers
    Communications in Mathematical Physics, 2017, 351 : 341 - 359
  • [9] Schrödinger equation as a confluent Heun equation
    Figueiredo, Bartolomeu Donatila Bonorino
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [10] MULTIPLE SOLUTIONS FOR THE SCHR?DINGER-POISSON EQUATION WITH A GENERAL NONLINEARITY
    蒋永生
    魏娜
    吴永洪
    ActaMathematicaScientia, 2021, 41 (03) : 703 - 711