Self-attention mechanism in person re-identification models

被引:0
|
作者
Wenbai Chen
Yue Lu
Hang Ma
Qili Chen
Xibao Wu
Peiliang Wu
机构
[1] Beijing Information Science & Technology University,School of Automation
[2] Yanshan University,School of Information and Engineering
[3] Chinese Academy of Sciences,State Key Laboratory of Management and Control for Complex Systems, Institute of Automation
来源
关键词
Person re-identification; Deep neural network; Self-attention; Computer vision;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, person re-identification based on video has become a hot topic in the field of person re-identification. The self-attention mechanism can improve the ability of deep neural networks in computer vision tasks such as image classification, image segmentation and natural language processing tasks. In order to verify whether the self-attention can improve the performance or not in person re-identification tasks, this paper applies two self-attention mechanisms, non-local attention and recurrent criss-cross attention to person re-identification model, and experiments are conducted on Market-1501, DukeMTMC-reID and MSMT17 person re-identification datasets. The results show that the self-attention mechanism can improve the accuracy of the person re-identification model. The accuracy is higher when the self-attention module is inserted into the convolutional layers of the re-identification network.
引用
收藏
页码:4649 / 4667
页数:18
相关论文
共 50 条
  • [31] Self-Channel Attention Weighted Part for Person Re-Identification
    Du, Lin
    Tian, Chang
    Zeng, Mingyong
    Wang, Jiabao
    Jiao, Shanshan
    Shen, Qing
    Bai, Wei
    Lu, Aihong
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (03) : 665 - 670
  • [32] Scalable Person Re-Identification by Harmonious Attention
    Wei Li
    Xiatian Zhu
    Shaogang Gong
    International Journal of Computer Vision, 2020, 128 : 1635 - 1653
  • [33] CASCADE ATTENTION NETWORK FOR PERSON RE-IDENTIFICATION
    Guo, Haiyun
    Wu, Huiyao
    Zhao, Chaoyang
    Zhang, Huichen
    Wang, Jinqiao
    Lu, Hanqing
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2264 - 2268
  • [34] PERSON RE-IDENTIFICATION USING VISUAL ATTENTION
    Rahimpour, Alireza
    Liu, Liu
    Taalimi, Ali
    Song, Yang
    Qi, Hairong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4242 - 4246
  • [35] Scalable Person Re-Identification by Harmonious Attention
    Li, Wei
    Zhu, Xiatian
    Gong, Shaogang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (06) : 1635 - 1653
  • [36] Person Re-Identification via Attention Pyramid
    Chen, Guangyi
    Gu, Tianpei
    Lu, Jiwen
    Bao, Jin-An
    Zhou, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7663 - 7676
  • [37] Deep progressive attention for person re-identification
    Wang, Changhao
    Zhang, Guanwen
    Zhou, Wei
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (04)
  • [38] Related Attention Network for Person Re-identification
    Liang, Jiali
    Zeng, Dan
    Chen, Shuaijun
    Tian, Qi
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 366 - 372
  • [39] Harmonious Attention Network for Person Re-Identification
    Li, Wei
    Zhu, Xiatian
    Gong, Shaogang
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2285 - 2294
  • [40] Learning Spatial-Temporal Graphs with Self-Attention Intensified Conditional Random Field for Video Person Re-identification
    Fang, Wen-Hsien
    Pramono, Rizard Renanda Adhi
    Chen, Yie-Tarng
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,