On Seymour’s Decomposition Theorem

被引:0
|
作者
S. R. Kingan
机构
[1] City University of New York,Department of Mathematics, Brooklyn College
来源
Annals of Combinatorics | 2015年 / 19卷
关键词
05B35; 05C83; matroids; minors; decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} be a class of matroids closed under minors and isomorphism. Let M be a 3-connected matroid in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} with an N-minor and let N have an exact k-separation (A, B). If there exists a k-separation (X, Y) of M such that A⊆X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \subseteq X}$$\end{document} and B⊆Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B \subseteq Y}$$\end{document}, we say the k-separation (A, B) of N is induced in M. In this paper we give new sufficient conditions to determine if an exact k-separation of N is induced in M.
引用
收藏
页码:171 / 185
页数:14
相关论文
共 50 条