On Seymour’s Decomposition Theorem

被引:0
|
作者
S. R. Kingan
机构
[1] City University of New York,Department of Mathematics, Brooklyn College
来源
Annals of Combinatorics | 2015年 / 19卷
关键词
05B35; 05C83; matroids; minors; decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} be a class of matroids closed under minors and isomorphism. Let M be a 3-connected matroid in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} with an N-minor and let N have an exact k-separation (A, B). If there exists a k-separation (X, Y) of M such that A⊆X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \subseteq X}$$\end{document} and B⊆Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B \subseteq Y}$$\end{document}, we say the k-separation (A, B) of N is induced in M. In this paper we give new sufficient conditions to determine if an exact k-separation of N is induced in M.
引用
收藏
页码:171 / 185
页数:14
相关论文
共 50 条
  • [1] On Seymour's Decomposition Theorem
    Kingan, S. R.
    ANNALS OF COMBINATORICS, 2015, 19 (01) : 171 - 185
  • [2] A new proof of Seymour's 6-flow theorem
    DeVos, Matt
    Rollova, Edita
    Samal, Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 187 - 195
  • [3] Another proof of Seymour's 6-flow theorem
    Devos, Matt
    Mcdonald, Jessica
    Nurse, Kathryn
    JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 944 - 946
  • [4] The Feedback Decomposition Theorem: The evolution of Miller's theorem
    Potirakis, SM
    Alexakis, GE
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1998, 85 (05) : 571 - 587
  • [5] A decomposition of Brouwer's fan theorem
    Berger, Josef
    JOURNAL OF LOGIC AND ANALYSIS, 2009, 1
  • [6] Spectral decomposition and Gelfand’s theorem
    A. Driouich
    O. El-Mennaoui
    M. Jazar
    Semigroup Forum, 2010, 80 : 391 - 404
  • [7] Spectral decomposition and Gelfand's theorem
    Driouich, A.
    El-Mennaoui, O.
    Jazar, M.
    SEMIGROUP FORUM, 2010, 80 (03) : 391 - 404
  • [8] Dilworth's Decomposition Theorem for Posets
    Rudnicki, Piotr
    FORMALIZED MATHEMATICS, 2009, 17 (04): : 223 - 232
  • [9] Polar decomposition and Brion's theorem
    Haase, C
    Integer Points in Polyhedra-Geometry, Number Theory, Algebra, Optimization, 2005, 374 : 91 - 99
  • [10] A node-capacitated Okamura–Seymour theorem
    James R. Lee
    Manor Mendel
    Mohammad Moharrami
    Mathematical Programming, 2015, 153 : 381 - 415