Critical properties of the three-dimensional frustrated Ising model on a cubic lattice

被引:0
|
作者
A. K. Murtazaev
I. K. Kamilov
M. K. Ramazanov
机构
[1] Russian Academy of Sciences,Institute of Physics, Dagestan Scientific Center
来源
关键词
Spectroscopy; State Physics; Heat Capacity; Monte Carlo Method; Correlation Length;
D O I
暂无
中图分类号
学科分类号
摘要
The critical properties of the three-dimensional fully frustrated Ising model on a cubic lattice are investigated by the Monte Carlo method. The critical exponents α (heat capacity), γ (susceptibility), β (magnetization), and ν (correlation length), as well as the Fisher exponent η, are calculated in the framework of the finite-size scaling theory. It is demonstrated that the three-dimensional frustrated Ising model on a cubic lattice forms a new universality class of the critical behavior.
引用
收藏
页码:1163 / 1168
页数:5
相关论文
共 50 条
  • [21] CRITICAL RELAXATION OF THREE-DIMENSIONAL KINETIC ISING MODEL.
    Kikuchi, Macoto
    Okabe, Yutaka
    Journal of the Physical Society of Japan, 1986, 55 (04): : 1359 - 1363
  • [22] Restoring isotropy in a three-dimensional lattice model: The Ising universality class
    Hasenbusch, Martin
    PHYSICAL REVIEW B, 2021, 104 (01)
  • [23] Critical behavior of three-dimensional frustrated helimagnets
    A. O. Sorokin
    Journal of Experimental and Theoretical Physics, 2014, 118 : 417 - 425
  • [24] Critical Behavior of Three-Dimensional Frustrated Helimagnets
    Sorokin, A. O.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2014, 118 (03) : 417 - 425
  • [25] Computer Modeling of Phase Transformations and Critical Properties of the Frustrated Heisenberg Model for a Cubic Lattice
    M. K. Ramazanov
    A. K. Murtazaev
    Physics of the Solid State, 2020, 62 : 976 - 981
  • [26] Computer Modeling of Phase Transformations and Critical Properties of the Frustrated Heisenberg Model for a Cubic Lattice
    Ramazanov, M. K.
    Murtazaev, A. K.
    PHYSICS OF THE SOLID STATE, 2020, 62 (06) : 976 - 981
  • [27] Waves in three-dimensional simple cubic lattice
    Wang, Xiao-yun
    Duan, Wen-shan
    Lin, Mai-mai
    Wan, Gui-xin
    CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 909 - 919
  • [28] Slicing the three-dimensional Ising model: Critical equilibrium and coarsening dynamics
    Arenzon, Jeferson J.
    Cugliandolo, Leticia F.
    Picco, Marco
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [29] Short-time critical dynamics of the three-dimensional Ising model
    Jaster, A
    Mainville, J
    Schülke, L
    Zheng, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (08): : 1395 - 1406
  • [30] Effect of elastic interaction on critical behavior of three-dimensional Ising model
    Boubcheur, EH
    Diep, HT
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) : 6085 - 6087