Developing the Lung Graph-Based Machine Learning Model for Identification of Fibrotic Interstitial Lung Diseases

被引:1
|
作者
Sun, Haishuang [1 ,2 ,3 ,4 ,5 ]
Liu, Min [6 ,7 ]
Liu, Anqi [6 ,7 ]
Deng, Mei [6 ,7 ]
Yang, Xiaoyan [1 ,2 ,3 ,4 ]
Kang, Han [8 ]
Zhao, Ling [9 ]
Ren, Yanhong [1 ,2 ,3 ,4 ]
Xie, Bingbing [1 ,2 ,3 ,4 ]
Zhang, Rongguo [10 ]
Dai, Huaping [1 ,2 ,3 ,4 ,7 ]
机构
[1] Natl Ctr Resp Med, State Key Lab Resp Hlth & Multimorbid, Beijing 100029, Peoples R China
[2] Natl Clin Res Ctr Resp Dis, Beijing 100029, Peoples R China
[3] Chinese Acad Med Sci, Inst Resp Med, Beijing 100029, Peoples R China
[4] China Japan Friendship Hosp, Dept Pulm & Crit Care Med, Beijing 100029, Peoples R China
[5] Sun Yat Sen Univ, Canc Ctr, Dept Med Oncol,Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China,Guangdong Key Lab, Guangzhou 510060, Guangdong, Peoples R China
[6] China Japan Friendship Hosp, Dept Radiol, Beijing 100029, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Beijing 100730, Peoples R China
[8] Infervis Med Technol Co Ltd, Inst Adv Res, Beijing 100025, Peoples R China
[9] China Japan Friendship Hosp, Dept Clin Pathol, Beijing 100029, Peoples R China
[10] Capital Normal Univ, Beijing 100048, Peoples R China
来源
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Fibrotic interstitial lung disease; Machine learning; Lung graph; High-resolution computed tomography; IDIOPATHIC PULMONARY-FIBROSIS; CLASSIFICATION; DIAGNOSIS;
D O I
10.1007/s10278-023-00909-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Accurate detection of fibrotic interstitial lung disease (f-ILD) is conducive to early intervention. Our aim was to develop a lung graph-based machine learning model to identify f-ILD. A total of 417 HRCTs from 279 patients with confirmed ILD (156 f-ILD and 123 non-f-ILD) were included in this study. A lung graph-based machine learning model based on HRCT was developed for aiding clinician to diagnose f-ILD. In this approach, local radiomics features were extracted from an automatically generated geometric atlas of the lung and used to build a series of specific lung graph models. Encoding these lung graphs, a lung descriptor was gained and became as a characterization of global radiomics feature distribution to diagnose f-ILD. The Weighted Ensemble model showed the best predictive performance in cross-validation. The classification accuracy of the model was significantly higher than that of the three radiologists at both the CT sequence level and the patient level. At the patient level, the diagnostic accuracy of the model versus radiologists A, B, and C was 0.986 (95% CI 0.959 to 1.000), 0.918 (95% CI 0.849 to 0.973), 0.822 (95% CI 0.726 to 0.904), and 0.904 (95% CI 0.836 to 0.973), respectively. There was a statistically significant difference in AUC values between the model and 3 physicians (p<0.05). The lung graph-based machine learning model could identify f-ILD, and the diagnostic performance exceeded radiologists which could aid clinicians to assess ILD objectively.
引用
收藏
页码:268 / 279
页数:12
相关论文
共 50 条
  • [21] Histological Predictors of Progression and Mortality in Fibrotic Interstitial Lung Diseases
    Arida, V. El Mir
    Ferreira, R. Gomes
    Aparecida Martins Coletta, E. Nei
    Soares, M. R.
    Pereira, C. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [22] Development and validation of a lung graph-based machine learning model to predict acute pulmonary thromboembolism on chest noncontrast computed tomography
    Deng, Mei
    Liu, Anqi
    Kang, Han
    Xi, Linfeng
    Yu, Pengxin
    Xu, Wenqing
    Yang, Haoyu
    Xie, Wanmu
    Liu, Min
    Zhang, Rongguo
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (10) : 6710 - +
  • [23] Machine Learning Algorithm to Improve Cohort Identification in Interstitial Lung Disease
    Farrand, E. D.
    Gologorskaya, O.
    Mills, H.
    Radhakrishnan, L.
    Collard, H. R.
    Butte, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [24] Segmentation and Classification of Interstitial Lung Diseases Based on Hybrid Deep Learning Network Model
    Vinta, Surendra Reddy
    Lakshmi, B.
    Safali, M. Aruna
    Kumar, G. Sai Chaitanya
    IEEE ACCESS, 2024, 12 : 50444 - 50458
  • [25] A prospective evaluation of lung ultrasonography in patients with fibrotic interstitial lung diseases; preliminary results.
    Pitsidianakis, Georgios
    Bolaki, Maria
    Vasarmidi, Eirini
    Karagiannis, Konstantinos
    Anotniou, Katerina
    Tzanakis, Nikolaos
    EUROPEAN RESPIRATORY JOURNAL, 2018, 52
  • [26] Safety and Effectiveness of Mycophenolate Mofetil in Interstitial Lung Diseases: Insights from a Machine Learning Radiographic Model
    Karampitsakos, Theodoros
    Kalogeropoulou, Christina
    Tzilas, Vasilios
    Papaioannou, Ourania
    Kazantzi, Alexandra
    Koukaki, Evangelia
    Katsaras, Matthaios
    Bouros, Evangelos
    Tsiri, Panagiota
    Tsirikos, Georgios
    Zarkadi, Eirini
    Ntoulias, Nikolaos
    Sotiropoulou, Vasilina
    Efthymiou, Panagiotis
    Chrysikos, Serafeim
    Malakounidou, Elli
    Sampsonas, Fotios
    Bouros, Demosthenes
    Tzouvelekis, Argyrios
    RESPIRATION, 2022, 101 (03) : 262 - 271
  • [27] Diagnostic and prognostic implications of family history of fibrotic interstitial lung diseases
    D. Duminy-Luppi
    A. Alcaide-Aldeano
    L. Planas-Cerezales
    G. Bermudo
    V. Vicens-Zygmunt
    P. Luburich
    B. Del Río-Carrero
    R. Llatjós
    L. Pijuan
    I. Escobar
    F. Rivas
    A. Montes-Worboys
    Y. Gutiérrez-Rodríguez
    D. Rodríguez-Plaza
    A. Padró-Miquel
    A. Esteve-Garcia
    B. Fernández-Varas
    C. Flores
    M. Fuentes
    J. Dorca
    S. Santos
    R. Perona
    A. Günther
    J. Shull
    M. Molina-Molina
    Respiratory Research, 25 (1)
  • [28] ENDOTHELIAL FENESTRATION OF THE ALVEOLAR CAPILLARIES IN INTERSTITIAL FIBROTIC LUNG-DISEASES
    KAWANAMI, O
    MATSUDA, K
    YONEYAMA, H
    FERRANS, VJ
    CRYSTAL, RG
    ACTA PATHOLOGICA JAPONICA, 1992, 42 (03): : 177 - 184
  • [29] Fibrotic interstitial lung diseases and air pollution: a systematic literature review
    Harari, Sergio
    Raghu, Ganesh
    Caminati, Antonella
    Cruciani, Mario
    Franchini, Massimo
    Mannucci, Piermannuccio
    EUROPEAN RESPIRATORY REVIEW, 2020, 29 (157): : 1 - 8
  • [30] Evidence from recent clinical trials in fibrotic interstitial lung diseases
    Cottin, Vincent
    Valenzuela, Claudia
    CURRENT OPINION IN PULMONARY MEDICINE, 2024, 30 (05) : 484 - 493