On the Number of Entangled Clusters

被引:0
|
作者
Mahshid Atapour
Neal Madras
机构
[1] York University,Department of Mathematics and Statistics
来源
关键词
Entanglement percolation; Entangled cluster; Lattice animal; Polymer; Linking; Critical probability;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the number of entangled clusters with N edges in the simple cubic lattice grows exponentially in N. This answers an open question posed by Grimmett and Holroyd (Proc. Lond. Math. Soc. 81:485–512, 2000). Our result has immediate implications for entanglement percolation: we obtain an improved rigorous lower bound on the critical probability, and we prove that the radius of the entangled component of the origin has exponentially decaying tail when p is small.
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [21] NUMBER AND DENSITY OF PERCOLATING CLUSTERS
    NEWMAN, CM
    SCHULMAN, LS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (07): : 1735 - 1743
  • [22] NUMBER OF CLUSTERS IN PERCOLATION MODEL
    GRIMMETT, GR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (JUN): : 346 - 350
  • [23] On the number of clusters in cluster analysis
    Takasu, A
    DISCOVERY SCIENCE, 1998, 1532 : 419 - 420
  • [24] Detecting the number of clusters in a network
    Budel, Gabriel
    Van Mieghem, Piet
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (06)
  • [25] Amplification of maximally-path-entangled number states
    Agarwal, G. S.
    Chaturvedi, S.
    Rai, Amit
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [26] Validity index and number of clusters
    Saad, Mohamed Fadhel
    Alimi, Adel M.
    International Journal of Computer Science Issues, 2012, 9 (1 1-3): : 52 - 57
  • [27] On the number of entangled qubits in quantum wireless sensor networks
    Mohapatra, Amit Kumar
    Balakrishnan, S.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2016, 14 (05)
  • [28] Effects of number scaling on entangled states in quantum mechanics
    Benioff, Paul
    QUANTUM INFORMATION AND COMPUTATION IX, 2016, 9873
  • [29] FLUCTUATIONS IN THE NUMBER OF PERCOLATION CLUSTERS
    CONIGLIO, A
    STANLEY, HE
    STAUFFER, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (12): : L323 - L327
  • [30] On the number of incipient spanning clusters
    Aizenman, M
    NUCLEAR PHYSICS B, 1997, 485 (03) : 551 - 582