A supersymmetric second modified KdV equation

被引:0
|
作者
Meng-Xia Zhang
Q P Liu
机构
[1] Capital Normal University,sDepartment of Mathematics
[2] China University of Mining and Technology,Department of Mathematics
关键词
D O I
10.2991/jnmp.2007.14.2.5
中图分类号
学科分类号
摘要
In this paper, based on the Bäcklund transformation for the supersymmetric MKdV equation, we propose a supersymmetric analogy for the second modified KdV equation. We also calculate its one-, two- and three-soliton solutions.
引用
收藏
页码:230 / 237
页数:7
相关论文
共 50 条
  • [21] Darboux transformation for the Manin-Radul supersymmetric KdV equation
    Liu, QP
    Manas, M
    PHYSICS LETTERS B, 1997, 394 (3-4) : 337 - 342
  • [22] Crum transformation and Wronskian type solutions for supersymmetric KdV equation
    Liu, QP
    Manas, M
    PHYSICS LETTERS B, 1997, 396 (1-4) : 133 - 140
  • [23] Nonlinear superposition formula for N=1 supersymmetric KdV equation
    Liu, QP
    Xie, YF
    PHYSICS LETTERS A, 2004, 325 (02) : 139 - 143
  • [24] Classification of Dark Modified KdV Equation
    熊娜
    楼森岳
    李彪
    陈勇
    CommunicationsinTheoreticalPhysics, 2017, 68 (07) : 13 - 20
  • [25] Discretization of the potential modified KdV equation
    Hirota, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (07) : 2234 - 2236
  • [26] The modified KdV equation on a finite interval
    de Monvel, AB
    Shepelsky, D
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (08) : 517 - 522
  • [27] NEW DISCRETE MODIFIED KDV EQUATION
    NARITA, K
    PROGRESS OF THEORETICAL PHYSICS, 1991, 86 (04): : 817 - 824
  • [28] Lax Pairs for the Modified KdV Equation
    Burde, Georgy I.
    AXIOMS, 2024, 13 (02)
  • [29] SYMMETRIES FOR THE SUPER MODIFIED KDV EQUATION
    KERSTEN, PHM
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (10) : 2187 - 2189
  • [30] Classification of Dark Modified KdV Equation
    Xiong, Na
    Lou, Sen-Yue
    Li, Biao
    Chen, Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (01) : 13 - 20