Rigid isotopy classification of generic rational curves of degree 5 in the real projective plane

被引:0
|
作者
Andrés Jaramillo Puentes
机构
[1] Université de Nantes,
来源
Geometriae Dedicata | 2021年 / 211卷
关键词
16th Hilbert problem; Dessins d’enfant; Real algebraic geometry; Primary 14P25; Secondary 14H57; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we obtain the rigid isotopy classification of generic rational curves of degre 5 in RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}{\mathbb {P}}^{2}$$\end{document}. In order to study the rigid isotopy classes of nodal rational curves of degree 5 in RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}{\mathbb {P}}^{2}$$\end{document}, we associate to every real rational nodal quintic curve with a marked real nodal point a nodal trigonal curve in the Hirzebruch surface Σ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma _3$$\end{document} and the corresponding nodal real dessin on CP1/(z↦z¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}{\mathbb {P}}^{1}/(z\mapsto {\bar{z}})$$\end{document}. The dessins are real versions, proposed by Orevkov (Annales de la Faculté des sciences de Toulouse 12(4):517–531, 2003), of Grothendieck’s dessins d’enfants. The dessins are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves C⊂Σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\subset \Sigma _n$$\end{document} in real Hirzebruch surfaces Σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma _n$$\end{document}. Nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {D}}^2$$\end{document}, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}{\mathbb {P}}^{2}$$\end{document}.
引用
收藏
页码:1 / 70
页数:69
相关论文
共 50 条