Rigid isotopy classification of generic rational curves of degree 5 in the real projective plane

被引:1
|
作者
Puentes, Andres Jaramillo [1 ]
机构
[1] Univ Nantes, Nantes, France
关键词
16th Hilbert problem; Dessins d'enfant; Real algebraic geometry;
D O I
10.1007/s10711-020-00540-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we obtain the rigid isotopy classification of generic rational curves of degre 5 in RP2. In order to study the rigid isotopy classes of nodal rational curves of degree 5 in RP2, we associate to every real rational nodal quintic curve with a marked real nodal point a nodal trigonal curve in the Hirzebruch surface Sigma(3) and the corresponding nodal real dessin on CP1/( z -> (z) over bar). The dessins are real versions, proposed by Orevkov (Annales de la Faculte des sciences de Toulouse 12(4):517-531, 2003), of Grothendieck's dessins d'enfants. The dessins are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves C subset of Sigma(n) in real Hirzebruch surfaces Sigma(n). Nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk D-2, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in RP2.
引用
收藏
页码:1 / 70
页数:70
相关论文
共 50 条