Commutative C*-Algebras of Toeplitz Operators on Complex Projective Spaces

被引:0
|
作者
Raul Quiroga-Barranco
A. Sanchez-Nungaray
机构
[1] Centro de Investigación en Matemáticas,
来源
关键词
Primary 47B35; Secondary 32A36; 32M15; 53C12; Toeplitz operator; Bergman space; complex projective space; commutative ; *-algebra; Lagrangian foliation; Abelian group;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of commutative C*-algebras of Toeplitz operators on every weighted Bergman space over the complex projective space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{P}^n}\mathbb{(C)}}$$\end{document}. The symbols that define our algebras are those that depend only on the radial part of the homogeneous coordinates. The algebras presented have an associated pair of Lagrangian foliations with distinguished geometric properties and are closely related to the geometry of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{P}^n}\mathbb{(C)}}$$\end{document}.
引用
收藏
页码:225 / 243
页数:18
相关论文
共 50 条