On weil reciprocity in motivic cohomology

被引:0
|
作者
Sophie Kriz
机构
[1] University of Michigan,Department of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Using Voevodsky’s derived category of motives, we prove a reciprocity law in motivic cohomology of a smooth projective morphism of dimension 1 over a smooth scheme over a perfect field.
引用
收藏
相关论文
共 50 条
  • [31] About Bredon motivic cohomology of a field
    Voineagu, Mircea
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 224 (04)
  • [32] Motivic cohomology of the complement of hyperplane arrangements
    Chatzistamatiou, Andre
    DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) : 375 - 389
  • [33] AUTOMORPHIC COHOMOLOGY, MOTIVIC COHOMOLOGY, AND THE ADJOINT L-FUNCTION
    Prasanna, Kartik
    Venkatesh, Akshay
    ASTERISQUE, 2021, (428) : 1 - 132
  • [34] Bredon motivic cohomology of the complex numbers
    Heller, Jeremiah
    Voineagu, Mircea
    Ostvaer, Paul Arne
    DOCUMENTA MATHEMATICA, 2024, 29 : 115 - 140
  • [35] Motivic cohomology and infinitesimal group schemes
    Primozic, Eric
    ANNALS OF K-THEORY, 2022, 7 (03) : 441 - 466
  • [36] Motivic cohomology over Dedekind rings
    Thomas Geisser
    Mathematische Zeitschrift, 2004, 248 : 773 - 794
  • [37] Motivic cohomology over Dedekind rings
    Geisser, T
    MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) : 773 - 794
  • [38] On the cohomology of reciprocity sheaves
    Binda, Federico
    Ruelling, Kay
    Saito, Shuji
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [39] COHOMOLOGY OF TRUNCATED WEIL ALGEBRAS
    DIENG, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (04): : 205 - 207
  • [40] A new Weil cohomology theory
    Tomasic, I
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 663 - 670